Real-Time Workshop”

For Use with Simulink®

Modeling
Simulation

Implementation

User’s Guide ..,--;‘_\The MathWorks

Version 6

X Ly

How to Contact The MathWorks:

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www . mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop User’s Guide
© COPYRIGHT 1994-2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

May 1994
January 1998
January 1999
September 2000
June 2001

July 2002

June 2004
October 2004
March 2005
September 2005
March 2006

First printing
Second printing
Third printing
Fourth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Version 1

Version 2.1

Version 3.11 (Release 11)

Version 4 (Release 12)

Updated for Version 4.1 (Release 12.1)
Updated for Version 5.0 (Release 13)
Updated for Version 6.0 (Release 14)
Updated for Version 6.1 (Release 14SP1)
Updated for Version 6.2 (Release 14SP2)
Updated for Version 6.3 (Release 14SP3)
Updated for Version 6.4 (Release 2006a)

Understanding Real-Time Workshop

1

Product Overview, 1-2
Some Real-Time Workshop Capabilities 1-2
Software Design with Real-Time Workshop 1-3

Rapid Prototyping Process 1-5
Key Aspects of Rapid Prototyping 1-5
Rapid Prototyping for Digital Signal Processing 1-9
Rapid Prototyping for Control Systems 1-10

Open Architecture of Real-Time Workshop 1-12
Support for C and C++ Code Generation 1-14
Support for International (Non-US-ASCII) Characters ... 1-16

WheretoFindHelp 1-20
Getting Started... i i 1-20
How Do l... ... e e i 1-20

Summary of Real-Time Workshop Limitations 1-26

Code Generation and the Build Process

2|

Choosing and Configuring Your Target 2-3
Selecting a System Target File 2-3
Selecting a System Target File Programmatically 2-4
Available Targets, 2-6
Creating Custom Targets i, 2-10
Template Makefiles and Make Options 2-10

Choosing and Configuring a Compiler 2-19

Real-Time Workshop and ANSI C/C++ Compliance 2-19

C++ Target Language Considerations 2-20
Choosing and Configuring Your Compiler on Windows ... 2-20
Choosing and Configuring Your Compiler on UNIX 2-21
Including S-Function Source Code 2-21

Adjusting Simulation Configuration Parameters for

Code Generation 2-23
Solver Optionsoitiiiiiiiiiiiiie i, 2-23
Data Import and Export Options 2-25
Optimization Options, 2-29
Diagnostics Options i, 2-43
Hardware Implementation Options 2-45
Model Referencing Optionsc.ccvviuna... 2-48
Simulink and Real-Time Workshop Interactions to

Consideroviii i e e 2-49

Configuring Real-Time Workshop Code Generation

Parameters 2-57
Real-Time Workshop Pane 2-57
Comments Optionsccciiiiiieenennnnnnn.. 2-64
Symbols Optionscciiiiiiiiinnnnnn.. 2-65
Custom Code Optionsccviiiiiineninnnnn.. 2-68
DebugOptionscoiiiiiiiiiiiii it 2-70
Interface Options, 2-72
Configuring Generated Code with TLC 2-77
Assigning Target Language Compiler Variables 2-77
Setting Target Language Compiler Options 2-79
Interacting with the Build Process 2-81
Initiating the Build Process 2-81
Construction of Symbols 2-82
Generated Source Files and File Dependencies 2-84
Reloading Code from the Model Explorer 2-104
Rebuilding Generated Code 2-105
Profiling Generated Code 2-105
Customizing the Build Process 2-108
Controlling the Compiling and Linking Phases of the Build
Process 2-108
Cross-Compiling Code Generated on Windows 2-109

vi Contents

Controlling the Location and Names of Libraries During

the Build Process i, 2-112
Recompiling Precompiled Libraries 2-116
Customizing Post Code Generation Build Processing 2-116

Validating Generated Code 2-122
Viewing Generated Code, 2-122
Tracing Generated Code Back to Your Simulink Model ... 2-124
Getting Model Optimization Advice 2-126

Integrating Legacy and Custom Code 2-128
Block-Based Integration 2-128
Model or Target-Based Integration 2-130

Generated Code Formats

3

Introduction i i .. 3-2
Targets and Code Formats 3-2
Choosing a Code Format for Your Application 3-9
Real-Time Code Format 3-12
Unsupported Blocks, 3-12
System Target Files, 3-12
Template Makefiles i, 3-12
Real-Time malloc Code Format 3-14
Unsupported Blocks, 3-14
System Target Files 3-15
Template Makefiles, 3-15
S-Function Code Format 3-16
Embedded Code Format 3-16
Using the Real-Time Model Data Structure 3-16
Making GRT-Based Targets ERT-Compatible 3-18

vii

viii

Building Subsystems and Working with
Referenced Models

4

Nonvirtual Subsystem Code Generation
Nonvirtual Subsystem Code Generation Options
Modularity of Subsystem Code
Code Reuse Limitations
Code Reuse Diagnostics,

Generating Code and Executables from Subsystems

Generating Code from Models Containing Model
Blocks i
About Model Reference,
Using Referenced Models
Project Directory Structure for Model Reference Targets ..
Inherited Sample Time for Referenced Models
Reusable Code and Referenced Models
Making Custom Targets Compatible with Model

Reference i
Model Referencing Limitations

Sharing Utility Functions
Controlling Shared Utility Generation
rtwtypes.h and Shared Utilities
Incremental Shared Utility Generation and Compilation ..
Shared Utility Checksum
Shared Fixed-Point Utilities

Supporting Shared Utility Directories in the Build
Process e
Modifying Template Makefiles to Support Shared

Utilities . ..o e e

Contents

4-2
4-3
4-14
4-14
4-15

4-16

Working with Data Structures

5

Parameters: Storage, Interfacing, and Tuning
Storage of Nontunable Parameters
Tunable Parameter Storage
Storage Classes of Tunable Parameters
Using the Model Parameter Configuration Dialog Box
Tunable Expressionsccuiiiiiineennnnnn..
Tunability of Linear Block Parameters
Parameter Configuration Quick Reference Diagram
Generated Code for Parameter Data Types
Data Type Considerations for Tunable Workspace

Parameters i,

Signal Storage, Optimization, and Interfacing
Signal Storage Concepts,
Signals with Auto Storage Class
Declaring Test Points
Interfacing Signals to External Code
Symbolic Naming Conventions for Signals in Generated

Code ..o e e
Summary of Signal Storage Class Options
C-API for Parameter Tuning and Signal Monitoring
Target Language Compiler API for Parameter Tuning and

Signal Monitoringcciiiiiieiinnnn...
Parameter Tuning by Using MATLAB Commands

Simulink Data Objects and Code Generation
Parameter Objects
Parameter Object Configuration Quick Reference

Diagram e e
Signal Objects,
Using Signal Objects to Initialize Signals and Discrete

States .. e e
Resolving Conflicts in Configuration of Parameter and

Signal Objectsciiiiiiiiiiiiinnnn..
Customizing Code for Parameter and Signal Objects
Using Objects to Export ASAP2 Files

Block States: Storing and Interfacing
Storage of Block States

ix

X

Contents

Block State Storage Classescccvvuu... 5-70
Using the State Properties Dialog Box to Interface States to

External Code i, 5-71
Symbolic Names for Block States 5-72
Block States and Simulink Signal Objects 5-75
Summary of State Storage Class Options 5-76

Storage Classes for Data Store Memory Blocks 5-78
Data Store Memory and Simulink Signal Objects 5-80

External Mode

6

Introduction 6-2
Using the External Mode User Interface 6-3
External Mode Interface Options 6-3
External Mode Related Menu and Toolbar Items 6-6
External Mode Control Panel 6-10
Target Interfacing 6-12
External Signal Uploading and Triggering 6-14
Data Archiving i, 6-18
Parameter Downloading 6-20
External Mode Compatible Blocks and Subsystems ... 6-22
Compatible Blocks 6-22
Signal Viewing Subsystems 6-22
External Mode Communications Overview 6-25
The Download Mechanism 6-25
Inlined and Tunable Parameters 6-26
Client/Server Implementations 6-28
Using the TCP/IP Implementation 6-28
Using the Serial Implementation 6-30
Running the External Program 6-32
Implementing an External Mode Protocol Layer 6-34

7

External Mode Parameters 6-35
External Mode Limitations 6-39
Program Architecture
Introduction i i, 7-2
Model Execution 7-4
Models for Non-Real-Time Single-Tasking Systems 7-6
Models for Non-Real-Time Multitasking Systems 77
Models for Real-Time Single-Tasking Systems 7-8
Models for Real-Time Multitasking Systems 7-9
Models for Multitasking Systems that Use Real-Time
Tasking Primitives i, 7-11
Program Timing 7-13
Program Execution, 7-14
External Mode Communication 7-14
Data Logging in Single-Tasking and Multitasking Model
Execution i 7-15
Rapid Prototyping and Embedded Model Execution
Differences ...t 7-16
Rapid Prototyping Model Functions 7-17
Embedded Model Functions 7-22
Rapid Prototyping Program Framework 7-24
Rapid Prototyping Program Architecture 7-24
Rapid Prototyping System-Dependent Components 7-26
Rapid Prototyping System-Independent Components 7-27
Rapid Prototyping Application Components 7-30
Embedded Program Framework 7-37

xi

xii

Contents

Models with Multiple Sample Rates

8

Introduction

Single-Tasking and Multitasking Execution Modes
Executing Multitasking Models
Multitasking and Pseudomultitasking Modes
Building a Program for Multitasking Execution
Single-Tasking Mode,
Building a Program for Single-Tasking Execution
Model Execution and Rate Transitions
Simulating Models with Simulink
Executing Models in Real Time
Single-Tasking Versus Multitasking Operation

Sample Rate Transitions
Data Transfer Problems
Data Transfer Assumptions
Rate Transition Block Options
Faster to Slower Transitions in Simulink
Faster to Slower Transitions in Real Time
Slower to Faster Transitions in Simulink
Slower to Faster Transitions in Real Time

Single-Tasking and Multitasking Execution of a Model:
anExample i ..
Single-Tasking Execution
Multitasking Execution

Optimizing a Model for Code Generation

9|

Optimization Parameters Overview

Optimizing Models,
Using the Model Advisor,
Demos Illustrating Optimizations

9-2

94
94
94

Other Optimization Tools and Techniques 9-4

ExpressionFolding 9-7
Expression Folding Example 9-7
Using and Configuring Expression Folding 9-9

Conditional Input Execution 9-14

Block Diagram Performance Tuning 9-15
Lookup Tables and Polynomials 9-15
Accumulators i e e 9-27
Useof DataTypescciiiiiiiiiiiinnnnnn.. 9-29
Additional Integer and Fixed-Point Optimizations 9-33

Writing S-Functions for Real-Time Workshop

10|

Introduction i .. 10-3
Additional Information, 10-3
Classes of Problems Solved by S-Functions 10-4
Types of S-Functions, 10-4
Basic Files Required for Implementation 10-7

Writing Noninlined S-Functions 10-9
Noninlined S-Function Parameter Type Limitations 10-9

Writing Wrapper S-Functions 10-11
MEX S-Function Wrapperccciiiino... 10-11
TLC S-Function Wrapperccoiiiiiinnnn... 10-15
The Inlined Codecc ot 10-20

Writing Fully Inlined S-Functions 10-21
Multiport S-Function Example 10-22

Writing Fully Inlined S-Functions with the mdIRTW
Routine i 10-23
S-Function RTWdata 10-24

xiii

Xiv

The Direct-Index Lookup Table Algorithm 10-24
The Direct-Index Lookup Table Example 10-26

Writing S-Functions That Support Expression

Folding i, 10-48
Categories of Output Expressions 10-49
Acceptance or Denial of Requests for Input Expressions .. 10-54
Utilizing Expression Folding in Your TLC Block

Implementation i, 10-58

Writing S-Functions That Specify Sample Time
InheritanceRules 10-64

Writing S-Functions That Support Code Reuse 10-67

Writing S-Functions for Multirate Multitasking

Environments 10-68
Rate Grouping Support in S-Functions 10-68
Creating Multitasking-Safe, Multirate, Port-Based Sample
Time S-Functions i, 10-69
Integrating Cand C++Code 10-76
Build Support for S-Functions 10-77
Implicit Build Support, 10-77
Specifying Additional Source Files for an S-Function 10-78
Using TLC Library Functions 10-79
Using the rtwmakecfgm API 10-80

111

Introduction 11-3
Intellectual Property Protection 11-4
Creating an S-Function Block from a Subsystem 11-5
Sample Time Propagation in Generated S-Functions 11-10

Contents

Choice of Solver Typecciiiiiiiiiiinnnnn.. 11-10

Tunable Parameters in Generated S-Functions 11-12
Automated S-Function Generation 11-14
System Target File and Template Makefiles 11-17
System Target File, 11-17
Template Makefiles 11-17
Checksums and the S-Function Target 11-18
S-Function Target Limitations 11-19
Run-Time Parameters and S-Function Compatibility
Diagnostics i e 11-19
Goto and From Block Limitations 11-19
Building and Updating Limitations 11-21
Unsupported Blocks, 11-21

12

Introduction i .. 12-2
Licensing Protocols for Simulink Solvers in RSim
Executables i 12-2
Rapid Simulation Performance 124
General Rapid Simulation Workflow 12-5
Identifying Your Rapid Simulation Requirements 12-7

Configuring Inport Blocks to Provide Rapid Simulation
SourceData i 12-9

Configuring and Building a Model for Rapid
Simulation 12-10

XV

xvi

13

Contents

Setting Up Rapid Simulation InputData
Creating a MAT-File That Includes a Model’s Parameter
Structure e
Creating a MAT-File for a From File Block
Creating a MAT-File for an Inport Block

Programming Scripts for Batch and Monte Carlo
Simulations i ..

Running Rapid Simulations
Requirements for Running Rapid Simulations
Setting a Clock Time Limit for a Rapid Simulation
Overriding a Model’s Simulation Stop Time
Reading the Parameter Vector into a Rapid Simulation ...
Specifying New Signal Data File for a From File Block ...
Specifying Signal Data File for an Inport Block
Changing Block Parameters for an RSim Simulation
Specifying a New Output Filename for a Simulation
Specifying New Output Filenames for To File Blocks

Rapid Simulation Target Limitations

Targeting Tornado for Real-Time Applications

The Tornado Environment
Confirming Your Tornado Setup Is Operational
VxWorks Librarycoiiiiiiiiiiiiennnnnn

Run-Time Architecture Overview
Parameter Tuning and Monitoring

Implementation Overview
Adding Device Driver Blocks
Configuring the Template Makefile
Tool Locationsciiiiiiiiniiinniennennnn.
Building the Program
Downloading and Running the Executable Interactively ..

Custom Code Blocks

14

Introduction i .. 14-2
Custom Code Library 14-3
Example: Using a Custom Code Block 14-6
Custom Code in Subsystems 14-8
Preventing User Source Code from Being Deleted from
Build Directoriesciiiiiiiiiiiiii.. 14-9

Timing Services

15|

Absolute and Elapsed Time Computation 15-2
Timers for Periodic and Asynchronous Tasks 15-2
Allocation of Timerscciitiiitinnnennnenn. 15-3
Integer Timers in Generated Code 15-3
Elapsed Time Counters in Triggered Subsystems 15-3

APIs for Accessing Timers 15-5
C-API for S-Functions i, 15-5
TLC API for Code Generation 15-8

Elapsed Timer Code Generation Example 15-9

Asynchronous Support

16

Introduction i .. 16-2
VxWorks Library Overviewc.cviueeennnn. 16-2
Accessing the VxWorks Library 16-4
Generating Code with the VxWorks Library Blocks 16-4
Demos and Additional Information 16-4

xvii

xviii

Interrupt Handling Blocks 16-5

Async Interrupt Blocko ., 16-5
Task SyncBlock 16-17
Rate Transitions and Asynchronous Blocks 16-28
Handling Rate Transitions for Asynchronous Tasks 16-29
Handling Multiple Asynchronous Interrupts 16-30
Using Timers in Asynchronous Tasks 16-33
Creating a Customized Asynchronous Library 16-36
Async Interrupt Block Implementation 16-36
Task Sync Block Implementation 16-40
asynclib.tle Support Library 16-42
Asynchronous Support Limitations 16-45

Data Exchange APIs

17

Contents

C-API for Interfacing with Signals and Parameters ... 17-2
Generating the C-APIFiles 17-3
Description of C-API Files 17-5
Using the C-API in an Application 17-16
Generating C-API and ASAP2 Files 17-20
Target Language Compiler API for Signals and

Parameters i 17-21

Creating an External Mode Communication

Channel 17-22
The Design of External Mode 17-22
External Mode Communications Overview 17-25
External Mode Source Files 17-27
Guidelines for Implementing the Transport Layer 17-30
Combining Multiple Models 17-34
Using GRT Malloc to Combine Models 17-35

C-API Limitationsttt 17-37

Blocks That Depend on Absolute Time

Al

Generating ASAP2 Files

Bl

OVerview B-2
Targets Supporting ASAP2 B-2
Defining ASAP2 Information B-4
Memory Address Attribute B-5
Generating an ASAP2File B-7
Using Generic Real-Time Target or Embedded Coder
Target . ..o e e e B-7
Using the ASAM-ASAP2 Data Definition Target B-9
Customizing an ASAP2 File B-11
ASAP2 File Structure on the MATLAB Path B-11
Customizing the Contents of the ASAP2 File B-11
ASAP2 Templatescciiiiiiiiiiiiiennnnnn B-13
Structure of the ASAP2File B-17
Generating ASAP2 and C-APIFiles B-19

Xix

XX

Contents

Examples

Cl

Models C-2
Model Reference C-2
Data Management C-2
Optimizations i, C-2
S-Functions i i C-3
CustomCode i, C-3
Timing Servicesciiiiiiiniinnnnn.. C-3
Interfaces i, C-3

Index

Understanding Real-Time
Workshop

The following sections describe the architecture and application of
Real-Time Workshop®, and summarize the contents and organization of its
documentation, giving an overview of its contents and some entry points into
it for a number of topics of interest.

Product Overview (p. 1-2) Highlights key Real-Time Workshop
capabilities and explains how
to apply Real-Time Workshop to
Model-Based Design and deployment

Rapid Prototyping Process (p. 1-5) Lists advantages of rapid prototyping
and describes its application in two
domains — digital signal processing
and control systems

Open Architecture of Real-Time Discusses ways of extending

Workshop (p. 1-12) Real-Time Workshop capabilities,
support for C and C++ code
generation, and support for
international characters

Where to Find Help (p. 1-20) Identifies resources for basic
descriptions and advanced
information on specific topics

Summary of Real-Time Workshop Lists product features that have
Limitations (p. 1-26) documented limitations and provides
cross references to details

1 Understanding Real-Time Workshop

1-2

Product Overview

Real-Time Workshop generates optimized, portable, and customizable ANSI
C or C++ code from Simulink® models to create standalone implementations
of models that operate in real-time and non-real-time in a variety of

target environments. Generated code can run on PC hardware, DSPs,
microcontrollers on bare-board environments, and with commercial or
proprietary real-time operating systems (RTOS). Real-Time Workshop lets
you speed up simulations, build in intellectual property protection, and
operate across a wide variety of real-time rapid prototyping targets. The
figure below illustrates the role of Real-Time Workshop (shaded elements) in
the software design process.

MATLAB

(|1le Simulink,
Toolboxes Stateflow, and Blocksets
D z;’g" Modeling and simulation

analysis Rapid simulations

External Mode Real-Time Workshop Customer defined
Real-Time Monitoring and Code Generator Monitoring and
Workshop parameter tuning Generates C or (++ parameter funing
components
Make -
process
Production
Rapid Prototyping Target Target
Real-time test environment

Early rapid prototyping iterations Final production
iteration

Software Design and Deployment Using MATLAB and Real-Time Workshop

Some Real-Time Workshop Capabilities

With Real-Time Workshop, you can quickly generate code for discrete-time,
continuous-time (fixed-step), and hybrid systems, as well as for finite state
machines modeled in Stateflow® using the optional Stateflow Coder. The

Product Overview

optional Real-Time Workshop Embedded Coder works with Real-Time
Workshop to generate efficient, embeddable source code. These core products
support a growing set of embedded targets, such as Embedded Target for
Motorola® MPC555, Embedded Target for the TI C6000™ DSP Platform, and
the Embedded Target for OSEK/VDX® operating environments.

Real-Time Workshop is a key link in the set of system design tools provided
by The MathWorks, providing a real-time development environment —

a direct path from system design to hardware implementation. You can
streamline application development and reduce costs with Real-Time
Workshop by testing design iterations with real-time hardware. Real-Time
Workshop supports the execution of dynamic system models on hardware
by automatically converting models to code and providing model debugging
support. It is well suited for accelerating simulations, rapid prototyping,
turnkey solutions, and production of embedded real-time applications.

Using integrated makefile-based targeting support, Real-Time Workshop
builds programs that can help speed up your simulations, provide intellectual
property protection, and run on a wide variety of real-time rapid prototyping
or production targets. Simulink’s external mode run-time monitor works
seamlessly with real-time targets, providing an elegant signal monitoring and
parameter tuning interface.

Software Design with Real-Time Workshop

A typical product cycle using MathWorks tools starts with modeling in
Simulink, followed by an analysis of the simulations in MATLAB®. During
the simulation process, you use the rapid simulation features of Real-Time
Workshop to speed up your simulations.

After you are satisfied with the simulation results, you use Real-Time
Workshop in conjunction with a rapid prototyping target, such as xPC Target.
The rapid prototyping target is connected to your physical system. You test
and observe your system, using your Simulink model as the interface to your
physical target. Once you have verified that your simulation is functioning
properly, you use Real-Time Workshop to transform your model to C or

C++ code. An extensible make process and download procedure creates an
executable for your model and places it on the target system. Finally, using
external mode, you can monitor and tune parameters in real-time as your
model executes on the target environment.

1-3

1 Understanding Real-Time Workshop

14

There are two broad classes of targets: rapid prototyping targets and
embedded targets. Code generated for the rapid prototyping targets supports
increased monitoring and tuning capabilities. Code generated for embedded
targets is highly optimized and suitable for deployment in production systems,
and can include application-specific entry points to monitor signals and tune
parameters.

To support embedded targets, The MathWorks distributes Real-Time
Workshop Embedded Coder as a separate product. Embedded Coder is an
extension of Real-Time Workshop, designed to generate C or C++ code for
embedded discrete-time systems, where efficiency, configurability, readability,
and traceability of the generated code are extremely important. Real-Time
Workshop Embedded Coder enhances Real-Time Workshop code generation
technology to generate embeddable ANSI or ISO C or C++ code that compares
favorably with hand-optimized code in terms of performance, ROM code size,
RAM requirements, and readability. See the Real-Time Workshop Embedded
Coder documentation for information about optimization, specifically for
embedded code.

Rapid Prototyping Process

Rapid Prototyping Process

Real-Time Workshop supports rapid prototyping, an application development
process that allows you to

® Conceptualize solutions graphically in a block diagram modeling
environment

e Evaluate system performance early on—before laying out hardware, coding
production software, or committing to a fixed design

® Refine your design by rapid iteration between algorithm design and
prototyping

® Monitor signals and tune parameters while your real-time model runs,
using Simulink in external mode as a graphical front end

Key Aspects of Rapid Prototyping

The figure below contrasts the rapid prototyping development process with
the traditional development process.

Traditional Approach Rapid Prototyping Process
g 2 —
= Algorithm = Algorithm design
EJ' development g and prototyping
g =
!
: L 3
g Hardware and ;:4

software design

Y

Implementation of Implementation of
production system production system

Traditional Versus Rapid Prototyping Development Processes

1-5

1 Understanding Real-Time Workshop

1-6

The traditional approach to real-time design and implementation typically
involves multiple teams of engineers, including an algorithm design team,
software design team, hardware design team, and an implementation team.
When the algorithm design team has completed its specifications, the software
design team implements the algorithm in a simulation environment and then
specifies the hardware requirements. The hardware design team then creates
the production hardware. Finally, the implementation team integrates the
hardware into the larger overall system.

This traditional development process is time-consuming because algorithm
designers often do not have access to the hardware that is actually deployed.
The rapid prototyping process combines the algorithm, software, and
hardware design phases, eliminating potential bottlenecks by allowing
engineers to see results and rapidly iterate solutions before building expensive
hardware.

Rapid Prototyping Process

Automating Programming

Automatic program building allows you to make design changes directly to the
block diagram, putting algorithm development (including coding, compiling,
linking, and downloading to target hardware) under control of a single process:

® Design a Model in Simulink

You begin the rapid prototyping process with the development of a model
in Simulink. Using principles of control engineering, you model plant
dynamics and other dynamic components that constitute a controller
and/or an observer.

® Simulate your Model in Simulink

You use MATLAB, Simulink, and toolboxes to aid in the development of
algorithms and analysis of the results. If the results are not satisfactory,
you can iterate the modeling and analysis process until results are
acceptable.

® Generate Source Code with Real-Time Workshop

Once simulation results are acceptable, you generate downloadable C or
C++ code that implements the appropriate portions of the model. You can
use Simulink in external mode to monitor signals, tune parameters, and
further validate and refine your model, quickly iterating through solutions.

¢ Implement a Production Prototype

At this stage, the rapid prototyping process is complete. You can begin the
final implementation for production with confidence that the underlying
algorithms work properly in your real-time production system.

1 Understanding Real-Time Workshop

The next figure illustrates the flow of this process.

Algorithm Design and Prototyping

Identify system Build/edit model in|
and/ or algorithm ——®| gimulink -
requirements +

Eun simulations and analyze results
using Simulink and MATLAB

Invoke the Real-Time Workshop build procedure,
download and run on yvour target hardware

Y

Analyze results and tune the model
using external mode

Y

Are No
results

OK?

| Yes

Y

Implement production system

The Rapid Prototyping Development Process

1-8

Rapid Prototyping Process

Highly productive development cycles are possible due to the integration
between MATLAB, Simulink, and Real-Time Workshop. Each component
adds value to your application design process:

e MATLAB: Provides design, analysis, and data visualization tools.
® Simulink: Provides system modeling, simulation, and validation.

¢ Real-Time Workshop: Generates C or C++ code from Simulink model,;
provides framework for running generated code in real-time, tuning
parameters, and monitoring real-time data.

Rapid Prototyping for Digital Signal Processing

The first step in the rapid prototyping process for digital signal processing
is to consider the kind and quality of the data to be worked on, and to
relate it to the system requirements. Typically this includes examining the
signal-to-noise ratio, distortion, and other characteristics of the incoming
signal, and relating them to algorithm and design choices.

System Simulation and Algorithm Design

In the rapid prototyping process, the block diagram plays two roles in
algorithm development. The block diagram helps to identify processing
bottlenecks, and to optimize the algorithm or system architecture. The
block diagram also functions as a high-level system description. That is, the
diagram provides a hierarchical framework for evaluating the behavior and
accuracy of alternative algorithms under a range of operating conditions.

Analyzing Results, Tuning Parameters, and Monitoring Signals
After you create an algorithm (or a set of candidate algorithms), the next
stage is to consider architectural and implementation issues. These include
complexity, speed, and accuracy. In a conventional development environment,
this would mean running the algorithm and recoding it in C or C++ orin a
hardware design and simulation package.

Using Simulink external mode you can change parameters while your
processing algorithms execute in real time on the target hardware. After
building and downloading the executable to your hardware, you tune
(modify) block parameters in Simulink, which downloads the new values to

1-9

1 Understanding Real-Time Workshop

1-10

the hardware. You can monitor the effects of your parameter changes by
connecting Scope blocks to signals that you want to observe.

Note Opening a dialog box for a source block causes Simulink to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow Simulink to continue.

Rapid Prototyping for Control Systems

Rapid prototyping for control systems is similar to digital signal processing,
with one major difference. In control systems design, you must model your
plant prior to developing algorithms to simulate closed-loop performance. The
process continues with the specification of a controller connected to the plant
model. Once your plant model is sufficiently accurate, the rapid prototyping
process for control system design continues in much the same manner as
digital signal processing design.

Rapid prototyping begins with developing block diagram plant models of
sufficient fidelity for preliminary system design and simulation. Once
simulations indicate acceptable system performance levels, the controller
block diagram is separated from the plant model and I/O device driver blocks
are attached to it. Automatic code generation immediately converts the
controller to real-time executable code, which can be automatically loaded
onto target hardware.

Modeling Plants in Simulink

The first step in the design process is development of a plant model. Next, you
specify a controller model to be connected to the plant model. The Simulink
libraries of linear and nonlinear blocks help you construct models involving
plant, sensor, and actuator dynamics. Because Simulink is customizable, you
can further simplify modeling by creating custom blocks and block libraries
from continuous- and discrete-time components.

Using the System Identification Toolbox, you can analyze test data to develop
an empirical plant model; or you can use the Symbolic Math Toolbox to
translate the equations of the plant dynamics into state-variable form.

Rapid Prototyping Process

Analyzing Simulation Results

You can use MATLAB and Simulink to analyze the results produced from a
model developed in the first step of the rapid prototyping process. At this
stage, you can design and add a controller to your plant.

Deriving and Analyzing Controller Algorithms

From the block diagrams developed during the modeling stage, you can
extract state-space models through linearization techniques. These matrices
can be used in control system design. You can use the following tools to
facilitate control system design, and work with the matrices that you derived:

® Control System Toolbox
Model Predictive Control Toolbox
Robust Control Toolbox

System Identification Toolbox

SimMechanics

Once you have your controller designed, you can create a closed-loop system
by connecting it to the Simulink plant model. Closed-loop simulations allow
you to determine how well the initial design meets performance requirements.

Once you have a satisfactory model, it is a simple matter to generate C or
C++ code directly from the controller block diagram, compile it for the target
processor, and link it with supplied or user-written application modules. The
plant model runs on the host platform, controlled by generated code on the
target processor.

Analyzing Results, Tuning Parameters, and Monitoring Signals

You can load output data from your program into MATLAB for analysis, or
display the data with third-party monitoring tools. You can easily make
design changes to the Simulink model and then regenerate the C or C++ code.

1-11

1 Understanding Real-Time Workshop

1-12

Open Architecture of Real-Time Workshop

Real-Time Workshop is an open system designed for use with a wide variety
of operating environments and hardware types. The figure Real-Time
Workshop Architecture on page 1-13 shows how you can extend key elements
of Real-Time Workshop.

You can configure the Real-Time Workshop program generation process to
your own needs by modifying the following components:

e Simulink and the model file (model.mdl)

Simulink provides a very high-level language (VHLL) development
environment. The language elements are blocks and subsystems that
visually embody your algorithms. You can think of Real-Time Workshop as
a compiler that processes a VHLL source program (model.mdl), and emits
code suitable for a traditional high-level language (HLL) compiler.

S-functions written in C or C++ let you extend the Simulink VHLL by
adding new general-purpose blocks, or incorporating legacy code into a
block.

¢ The intermediate model description (model.rtw)

The initial stage of the code generation process is to analyze the source
model. The resultant description file contains a hierarchical structure of
records describing systems and blocks and their connections.

The S-function API includes a special function, md1RTW, that lets you
customize the code generation process by inserting parameter data from
your own blocks into the model . rtw file.

® The Target Language Compiler (TLC) program

The Target Language Compiler interprets a program that reads the
intermediate model description and generates code that implements the
model as a program.

You can customize the elements of the TLC program in two ways. First,
you can implement your own system target file, which controls overall
code generation parameters. Second, you can implement block target files,
which control how code is generated from individual blocks such as your
own S-Function blocks.

Open Architecture of Real-Time Workshop

model .mdl

] . ’| ‘- _________ -|
MATLAB Simulink -4—— (code S-functions

Real-Time Workshop

Download to target hardware

\

Start execution using Simulink external mode

|
|
I
|
|
system.tmf Real-Time Workshop build |
model .rtw |
] |
Tarpet Language

. Target I
Compiler (TLC) program: —m Language |
* System target file Compiler |
* Block target files |

. i Taye model .c
Function library odel T |
model private.h |
I
I
Run-time. interface nake model .mk |
support files |

i}

|
model .exe I
I
|
|
I
|

Real-Time Workshop Architecture

® Source code generated from the model; for descriptions of these files, see
Getting Started.

There are several ways to customize generated code, or interface it to
custom code:

1-13

1 Understanding Real-Time Workshop

1-14

Exported entry points let you interface your hand-written code to the
generated code. This makes it possible to develop your own timing and
execution engine, or to combine code generated from several models into
a single executable.

You can automatically make signals, parameters, and other data
structures within generated code visible to your own code, facilitating
parameter tuning and signal monitoring.

Prepare or modify Target Language Compiler script files to customize
the transformation of Simulink blocks into source code. See the Target
Language Compiler documentation for more details.

® Run-time interface support files

The run-time interface consists of code interfacing to the generated model
code. You can create a custom set of run-time interface files, including

A harness (main) program
Code to implement a custom external mode communication protocol

Code that interfaces to parameters and signals defined in the generated
code

Timer and other interrupt service routines

Hardware 1/0 drivers

® The template makefile and model .mk

A makefile, model.mk, controls the compilation and linking of generated
code. Real-Time Workshop generates model.mk from a template makefile
during the code generation and build process. You can create a custom
template makefile to control compiler options and other variables of the
make process.

All of these components contribute to the process of transforming a Simulink
model into an executable program. The topics in the next section point you to
documentation describing each of them.

Support for C and C++ Code Generation

Real-Time Workshop supports C and C++ code generation. The primary
motivation for C++ support is to facilitate integration of generated code with

Open Architecture of Real-Time Workshop

legacy or custom user code written in C++. Consider the following as you
choose a language for your generated code:

Whether you need to configure Real-Time Workshop to use a specific
compiler. This is required to generate C++ code on Windows. See “Choosing
and Configuring a Compiler” on page 2-19.

The language configuration setting for the model. See “Language” on page
2-60.

Whether you need to integrate legacy or custom code with generated code.
For a summary of integration options, see “Integrating Legacy and Custom
Code” on page 2-128.

Whether you need to integrate C and C++ code. If so, see “Integrating C
and C++ Code” on page 10-76.

“C++ Target Language Limitations” on page 1-15.

For a demo, enter sfcndemo_cppcount in the MATLAB Command Window.
For a Stateflow example, enter st _cpp.

C++ Target Language Limitations

Microsoft Visual C/C++, GNU C/C++, Watcom C/C++ and Borland®
C/C++ compilers have been fully tested with V6.4 (R2006a) Real-Time
Workshop and are fully supported on 32-bit Windows and 32/64-bit Linux
platforms. However, V6.4 (R2006a) provides Beta C++ support only for the
Intel® C/C++ compiler, which has not yet been fully evaluated for C++
compatibility with MathWorks products.

Real-Time Workshop provides Beta support for C++ code generation for all
blockset products. C++ code generation for other blockset products has
not yet been fully evaluated.

Real-Time Workshop does not support C++ code generation for the
following:

Embedded Target for Infineon C166® Microcontrollers
Embedded Target for Motorola® MPC555

Embedded Target for Motorola® HC12

Embedded Target for OSEK/VDX®

1-15

1 Understanding Real-Time Workshop

1-16

Embedded Target for TT C2000™ DSP
Embedded Target for TT C6000™ DSP
SimDriveline

SimMechanics

SimPowerSystems

xPC Target

® When using the model reference feature, the language of the code generated
for the top model and any referenced models must match. For example,
if you generate C++ code for the top model, the generated code for all
referenced models must also be C++ code.

® The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

= Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

= Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Support for International (Non-US-ASCIl) Characters

Real-Time Workshop does not include non-US-ASCII characters in compilable
portions of source code. However, Simulink, Stateflow, Real-Time Workshop,
and Real-Time Workshop Embedded Coder do support non-US-ASCII
characters in certain ways. When non-US-ASCII characters are encountered
during code generation, they either become comments in the generated code
or do not propagate into the generated source files. Sources of non-US-ASCII
characters are described below:

¢ Simulink Block Names: The name of Simulink blocks are permitted to
use non-US-ASCII character sets. The block name can be output in a
comment above the generated code for that block when the Simulink
block comments check box is selected. If Real-Time Workshop also uses
the block name in the generated code as an identifier, the identifier’s name
will be changed to ensure only US-ASCII characters are present.

One exception to using non-US-ASCII characters in block names is for
nonvirtual subsystems configured to use the subsystem name as either the

Open Architecture of Real-Time Workshop

function name or the filename. In this case, only US-ASCII characters
can be used to name the subsystem.

e User comments on Stateflow diagrams: These comments can contain
non-US-ASCII characters. They are written to the generated code when
the Include comments check box is selected.

® Custom TLC files (.tlc): User-created Target Language Compiler files
can have non-US-ASCII characters inside both TLC comments and in any
code comments which are output. The Target Language Compiler does not
support non-US-ASCII characters in TLC variable or function names.

Additional Support with Real-Time Workshop Embedded Coder

Users of Real-Time Workshop Embedded Coder have additional international
character support:

¢ Simulink Block Description: Real-Time Workshop Embedded Coder
propagates block descriptions entered from Simulink Block Parameter
dialog boxes into the generated code as comments when the Simulink
block descriptions check box on the Real-Time Workshop/Comments
pane of the Configuration Parameters dialog box is selected. Non-US-ASCII
characters are supported for these descriptions.

¢ Real-Time Workshop Embedded Coder code template file: Code Generation
Template (.cgt) files provide customization capability for the generated
code. Any output lines in the .cgt file which are C or C++ comments can
contain non-US-ASCII characters, for example the file banner and file
trailer sections; these comments are propagated to the generated code.
However, although TLC comments in .cgt files can contain non-US-ASCII
characters, these TLC comments are not propagated to the generated code.

e Stateflow object descriptions: Stateflow object descriptions can contain
non-US-ASCII characters. The description will appear as a comment above
the generated code for that chart when the Stateflow object descriptions
check box is selected.

¢ Simulink Parameter Object Description: Simulink Parameter Object
descriptions can contain non-US-ASCII characters. The description will
appear as a comment above the generated code when the Simulink data
object descriptions check box is selected.

1-17

1 Understanding Real-Time Workshop

1-18

e MPT Signal Object Description: MPT object descriptions can contain
non-US-ASCII characters. The description will appear as a comment above
the generated code when the Simulink data object descriptions check box
is selected.

Character Set Limitation

You can encounter problems with models containing characters of a specific
character set, such as Shift JIS, on a host system for which that character
set is not configured as the default.

When models containing characters of a given character set are used on a host
system that is not configured with that character set as the default, Simulink
can incorrectly interpret characters during model loading and saving. This
can lead to corrupted characters being displayed in the model and possibly
the model failing to load. It can also lead to corrupted characters in the model
file (.md1) if you save it.

This limitation does not exist when the characters used in the model are in
the default character set for the host system. For example, you can use Shift
JIS characters with no issues if the host system is configured to use Japanese
Windows.

Additionally, during code generation, the Target Language Compiler can
have similar problems reading characters from either the model.rtw or user
written .tlc files. This can result in corrupt characters in generated source
file comments or a Target Language Compiler error.

For an example of international character set support for code generation, run
the demo model rtwdemo_international. This demo model is set up to work
around the character limitations described above. If you run this demo from
a non-Japanese MATLAB host machine, you must set up an international
character set for Simulink. For example, type

bdclose all; set param(0, 'CharacterEncoding', 'Shift JIS')
rtwdemo_international

Other uses of non-US-ASCII characters in models or in files used during the
build process are not supported; you should not depend on any incidental
functionality that may exist.

Open Architecture of Real-Time Workshop

For additional information, see the description of s1CharacterEncoding
in “ Model Construction Commands — Alphabetical List” in the Simulink
documentation.

1-19

1 Understanding Real-Time Workshop

1-20

Where to Find Help

Documentation for Real-Time Workshop and related products from The
MathWorks covers many topics—some in considerable depth—and includes
many examples of use. Some of the major topics covered are summarized
below, enabling you to locate directly what you need to proceed.

Getting Started...

If you are a less experienced user, see Getting Started, which introduces the
product and describes its capabilities, applications, benefits, and general
usage. Inside that guide are tutorials that provide immediate hands-on
experience to get you familiar with the look, feel, and capabilities of Real-Time
Workshop.

How Do I...

If you need specific details about how to use Real-Time Workshop, scan
the topics and descriptions below to locate documentation relevant to your
development tasks and interests. You can also search the index to find
information not included in this list.

Operate the Real-Time Workshop User Interface

You control most aspects of code generation through the Real-Time Workshop
tab of the Configuration Parameters dialog box, and the dialog boxes
descending from it. See “Configuring Real-Time Workshop Code Generation
Parameters” on page 2-57 for full descriptions of the options at your disposal.

Select Targets and Customize Compilation

Setting up targets for code generation is simple with the Target File Browser,
described in “Choosing and Configuring Your Target” on page 2-3. Look there
also for information on configuring compilers (“Choosing and Configuring

a Compiler” on page 2-19) and modifying makefiles (“Template Makefiles

and Make Options” on page 2-10). For details on working with specific
targets, see Chapter 11, “The S-Function Target”,Chapter 12, “Running Rapid
Simulations”, Chapter 13, “Targeting Tornado for Real-Time Applications”,
Appendix B, “Generating ASAP2 Files”, and the Real-Time Workshop
Embedded Coder documentation.

Where to Find Help

Generate Single-Tasking and Multitasking Code

Real-Time Workshop fully supports single-tasking and multitasking code
generation. See Chapter 7, “Program Architecture”, Chapter 8, “Models with
Multiple Sample Rates”, Chapter 15, “Timing Services”, and Chapter 16,
“Asynchronous Support” for a more details.

Customize Generated Code
Real-Time Workshop supports customization of the generated code.

You can include Custom Code blocks in any system of any model to insert
comments, include directives and code fragments in specific functions. See
Chapter 14, “Custom Code Blocks”, for more information. You can also insert
C or C++ code by using the Custom Code configuration set dialog box.

The most flexible approach to customizing generated code is to modify
Target Language Compiler (TLC) files. The Target Language Compiler is an
interpreted language that translates Simulink models into C or C++ code.
Using the Target Language Compiler, you can direct the code generation
process.

You can customize Real-Time Workshop generated code to include custom
header files. See “Code Configuration Functions” in the Target Language
Compiler documentation for details.

Optimize Generated Code

The default code generation settings are generic for flexible rapid prototyping
systems. The penalty for this flexibility is code that is less than optimal.
There are several optimization techniques that you can use to minimize the
source code size and memory usage once you have a model that meets your
requirements.

See Chapter 2, “Code Generation and the Build Process”, and Chapter
6, “External Mode”, to learn techniques for code optimization techniques
available for all target configurations. Start by running Model Advisor
to evaluate and enhance the quality of code that Real-Time Workshop
can generate for a model. See the Real-Time Workshop Embedded Coder
documentation for information on optimizing embedded code.

1-21

1 Understanding Real-Time Workshop

1-22

Make Subsystem and Referenced Model Code Reusable

If your models contain multiple references to the same atomic subsystem,
you can ask Real-Time Workshop to generate a single reentrant function

to represent the subsystem, rather than inlining it or generating multiple
functions that all do the same thing. Chapter 4, “Building Subsystems and
Working with Referenced Models”, tells how to do this, and describes model
characteristics that can limit or prevent subsystem reuse. It also tells you
how to integrate code from referenced models into your applications and how
project (slprj) directories are organized.

Verify Generated Code

Using Real-Time Workshop data logging features, you can create an
executable that runs on your workstation and creates a data file. You can
then compare the results of your program with the results of running an
equivalent Simulink simulation.

For more information on how to verify Real-Time Workshop generated code,
see “Data Import and Export Options” on page 2-25. See also “Data Logging”
and “Code Verification” in Getting Started.

Incorporate Generated Code into Larger Systems

If your Real-Time Workshop generated code is intended to function within an
existing code base (for example, if you want to use the generated code as a
plug-in function), you should use Real-Time Workshop Embedded Coder. See
the Real-Time Workshop Embedded Coder documentation for information on
entry points and header files you need to interface code to code generated by
Real-Time Workshop Embedded Coder.

Incorporate Existing Code into Generated Code

To interface your hand-written code with Real-Time Workshop generated code,
you can use an S-function wrapper. See Chapter 10, “Writing S-Functions
for Real-Time Workshop”, for specific instructions. For additional details,

see “Writing S-Functions” in the Simulink documentation and the Target
Language Compiler documentation.

Where to Find Help

Integrate Generated Code with Legacy and Custom Code

A variety of mechanisms are available for integrating code generated

by Real-Time Workshop into legacy or custom code and vice versa. See
“Integrating Legacy and Custom Code” on page 2-128 and “Build Support for
S-Functions” on page 10-77 for details.

Trace Code Back to Blocks

Real-Time Workshop inserts comments throughout the generated code that
make it easy to trace generated code back to your Simulink model. See
“Tracing Generated Code Back to Your Simulink Model” on page 2-124 for
more information about this feature. HTML code generation reports and
the Code Viewer in Model Explorer include hyperlinks that link symbols in
the generated code to blocks that generated them for Real-Time Workshop
Embedded Coder users. See “Generating Code for a Referenced Model” in
Getting Started for an example of viewing generated code in Model Explorer.

Avutomate Builds

Using Real-Time Workshop, you can generate code with the push of a button.
The automatic build procedure, initiated by a single mouse click and driven
by a model and a system target file, generates code, a makefile, and optionally
compiles (or cross-compiles) and downloads a program. See “Automatic
Program Building” in Getting Started for an overview, and Chapter 2, “Code
Generation and the Build Process” for complete details.

You can create your own system target files to create custom targets that
interface with external code or operating environments. If you have in the
past created system target files, note that the form of callbacks has changed
between Versions 5 and 6 of Real-Time Workshop. See the Real-Time
Workshop Embedded Coder documentation for full details.

1-23

1 Understanding Real-Time Workshop

1-24

Tune Parameters During Execution

Parameter tuning enables you to change block parameters while a generated
program runs, thus avoiding recompiling the generated code. Real-Time
Workshop supports parameter tuning in four different environments:

¢ External mode: You can tune parameters from Simulink while running the
generated code on a target processor. See Chapter 6, “External Mode”, for
information on this mode.

e External C application program interface (API): You can write your own
C-API interface for parameter tuning using support files provided by The
MathWorks. See Chapter 17, “Data Exchange APIs”, for more information.

® Rapid simulation: You can use the Rapid Simulation Target (rsim) in
batch mode to provide fast simulations for performing parametric studies.
Although this is not an on-the-fly application of parameter tuning, it is
nevertheless a useful way to evaluate a model. This mode is also useful for
Monte Carlo simulation. See Chapter 12, “Running Rapid Simulations”,
for more information.

® Simulink: Prior to generating real-time code, you can tune parameters
on the fly in your Simulink model.

See also “Interface with Signals and Parameters ” on page 1-25.

Monitor Signals and Log Data
There are several ways to monitor signals and data in Real-Time Workshop:

® External mode: You can monitor and log signals from an externally
executing program by using Scope blocks and several other types of
external mode compatible blocks. See “Using the External Mode User
Interface” on page 6-3 for a discussion of what external mode can do, and
“Creating an External Mode Communication Channel” on page 17-22 for
advanced details on customizing external mode communication.

e External C application program interface (API): You can write your
own C-API for signal monitoring using support files provided by The
MathWorks. See Chapter 17, “Data Exchange APIs”, for more information.

Where to Find Help

o MAT-file logging: You can use a MAT-file to log data from the generated
executable. See “Data Import and Export Options” on page 2-25 for more
information.

¢ Simulink: You can use any of the Simulink data logging capabilities.

Interface with Signals and Parameters
You can interface signals and parameters in your model to hand-written code

by specifying the storage declarations of signals and parameters. For more
information, see

* “Parameters: Storage, Interfacing, and Tuning” on page 5-2

® “Signal Storage, Optimization, and Interfacing” on page 5-27

® “Interfacing Signals to External Code” on page 5-36

o “C-API for Interfacing with Signals and Parameters” on page 17-2

Learn from Sample Implementations
Real-Time Workshop provides sample implementations that illustrate

the development of real-time programs under Tornado, as well as generic
real-time programs under Windows and UNIX.

These sample implementations are located in the following directories:

® matlabroot/rtw/c/grt: Generic real-time examples

® matlabroot/rtw/c/tornado: Tornado examples

1-25

1 Understanding Real-Time Workshop

Summary of Real-Time Workshop Limitations
The following topics identify Real-Time Workshop feature limitations:

® “C++ Target Language Limitations” on page 1-15
e “Tunable Expression Limitations” on page 5-15

® “Limitations on Specifying Data Types in the Workspace Explicitly” on
page 5-26

® “Code Reuse Limitations” on page 4-14

® “Model Referencing Limitations” on page 4-46

¢ “External Mode Limitations” on page 6-39

® “Noninlined S-Function Parameter Type Limitations” on page 10-9
¢ “S-Function Target Limitations” on page 11-19

® “Rapid Simulation Target Limitations” on page 12-40

e “C-API Limitations” on page 17-37

® “Simulink Block Support”

1-26

Code Generation and the
Build Process

This chapter provides an overview of the Real-Time Workshop features
that you can control with the Configuration Parameters dialog box and
Model Explorer. The following sections step you through the Configuration
Parameters dialog panes and discuss more options for controlling code
generation and compiling it for specific environments.

Choosing and Configuring Your Explains how to select a system
Target (p. 2-3) target file and discusses template
makefiles and the make command
Choosing and Configuring a Provides guidance for choosing and
Compiler (p. 2-19) configuring a compiler and choosing

appropriate template makefiles

Adjusting Simulation Configuration Explains how to adjust solver,

Parameters for Code Generation data import and export,

(p. 2-23) optimization, diagnostic, hardware
implementation, and model
referencing parameters for code

generation
Configuring Real-Time Workshop Explains how to use the Real-Time
Code Generation Parameters Workshop pane of the Configuration
(p. 2-57) Parameters dialog box to configure

code generation options

Configuring Generated Code with Explains how to use the Target

TLC (p. 2-77) Language Compiler to generate
source code in specific ways or to
give the code specific characteristics

2 Code Generation and the Build Process

Interacting with the Build Process Discusses details about the build

(p. 2-81) process and how to interact with it

Customizing the Build Process Explains how to customize the

(p. 2-108) build process for cross compilation,
library usage, post code generation
processing

Validating Generated Code (p. 2-122) Discusses tools and techniques
available for validating generated

code
Integrating Legacy and Custom Summarizes the different ways of
Code (p. 2-128) integrating legacy and custom code
with code generated by Real-Time
Workshop

2-2

Choosing and Configuring Your Target

Choosing and Configuring Your Target

The first step to setting up a file for code generation is to choose and configure
a system target. The process of generating target-specific code is controlled
by the following:

® A system target file

* A template makefile

e A make command

You can specify this configuration information for a specific type of target in

one step by using the System Target File Browser. The browser lists a variety
of ready-to-run configurations.

When you select a target, Real-Time Workshop changes settings in the
current configuration set to be compatible with the corresponding system
target file. For example, many hardware emulation target settings, such as
word size and byte ordering, are set automatically according to device type
requirements. After selecting a system target, you can modify other model
configuration settings to meet model or system requirements.

If you want to apply different system target files to a given model, you can do
so by creating multiple configuration sets for that model. At any given time,
you choose one configuration set to be the active configuration set. This is the
preferred practice over simply changing the model’s system target file.

The following topics discuss

® “Selecting a System Target File” on page 2-3

® “Selecting a System Target File Programmatically” on page 2-4
® “Available Targets” on page 2-6

® “Creating Custom Targets” on page 2-10

¢ “Template Makefiles and Make Options” on page 2-10

Selecting a System Target File

To select a target configuration using the System Target File Browser,

2-3

2 Code Generation and the Build Process

2-4

1 Click Real-Time Workshop on the Configuration Parameters dialog box.
The Real-Time Workshop pane appears.

2 Click the Browse button next to the System target file field. This opens
the System Target File Browser. The browser displays a list of all currently
available target configurations, including customizations. When you select
a target configuration, Real-Time Workshop automatically chooses the
appropriate system target file, template makefile, and make command.

“Selecting a System Target File” on page 2-3 shows the System Target File
Browser with the generic real-time target selected.

3 Click the desired entry in the list of available configurations. The
background of the list box turns yellow to indicate an unapplied choice has
been made. To apply it, click Apply or OK.

System target file: Description:
asapd . tloc ASAM—ASAP2 Data Definition Ta e
clbeb . tlc L@ Embedded Target for Infineon
ert.tlc Feal-Timne Workshop Embedded C
ert.tlc Feal-Time Workshop Embedded C—
ert.tlc Feal-Timne Workshop Embedded C
ert.tlc Vi=zual C-C++ Project Makefile
grt.tlc Generic REeal-Time Target
grt.tlc Vi=zual C-C++ Project Makefile
grt_malloc. tlc Generic Real-Time Target with
< | »
Full name:
Template make file:
Make command:

QK I Cancel Help | Apply |

System Target File Browser

When you choose a target configuration, Real-Time Workshop automatically
chooses the appropriate system target file, template makefile, and make
command for the selected target, and displays them in the System target
file field. The description of the target file from the browser is placed below
its name in the general Real-Time Workshop pane.

Selecting a System Target File Programmatically

Simulink models store model-wide parameters and target-specific data in
configuration sets. Every configuration set contains a component that defines
the structure of a particular target and the current values of target options.

Choosing and Configuring Your Target

Some of this information is loaded from a system target file when you select
a target using the System Target File Browser. You can configure models to
generate alternative target code by copying and modifying old or adding new
configuration sets and browsing to select a new target. Subsequently, you can
interactively select an active configuration from among these sets (only one
configuration set can be active at a given time).

Scripts that automate target selection need to emulate this process.
To program target selection

1 Obtain a handle to the active configuration set with a call to the
getActiveConfigSet function.

2 Define string variables that correspond to the required Real-Time
Workshop system target file, template makefile, and make command
settings. For example, for the ERT target, you would define variables for
the strings 'ert.tlc’', 'ert_default tmf', and 'make rtw'.

3 Select the system target file with a call to the switchTarget function. In
the function call, specify the handle for the active configuration set and
the system target file.

4 Set the TemplateMakefile and MakeCommand configuration parameters
to the corresponding variables created in step 2. For descriptions of
TemplateMakefile and MakeCommand, see “Configuration Parameter
Reference” in the Real-Time Workshop Reference.

For example:

cs = getActiveConfigSet(model);

stf = 'ert.tlc’;

tmf 'ert_default tmf';

mc 'make_rtw';
switchTarget(cs,stf,[]);
set_param(cs, 'TemplateMakefile',tmf);
set_param(cs, 'MakeCommand',mc) ;

2-5

2 Code Generation and the Build Process

2-6

Available Targets

The following table lists supported system target files and their associated
code formats. The table also gives references to relevant manuals or chapters
in this book. All of these targets are built using the make rtw make command.

Note You can select any target of interest using the System Target File
Browser. This allows you to experiment with configuration options and save
your model with different configurations. However, you cannot build or
generate code for non-GRT targets unless you have the appropriate license
on your system (Real-Time Workshop Embedded Coder for ERT, Real-Time
Windows for RTWIN, and so on).

Each system target file invokes one or more template makefiles. The template
makefile that is invoked activates a particular compiler (for example, Lcc,
gce, Watcom, or Borland). This is specified for you by MEXOPTS, which is
determined when you run mex -setup to select a compiler for mex. The one
exception is the Visual C/C++ project target, which has System Target File
Browser entries.

Targets Available from the System Target File Browser

Target/Code System Target | Template Makefile
Format File and Comments Reference
Real-Time ert.tlc ert_default tmf Real-Time Workshop
Workshop Use mex -setup to Embedded Coder
Embedded Coder eanifisiie o L(I?c documentation
(B @ DINDY Watcom, Borland, vc,

gce, Intel, and so on
Real-Time ert.tlc ert_msvc.tmf Real-Time Workshop
Workshop Creates a makefile Embedded Coder

Embedded Coder
for Visual C/C++
Project Makefile

which can be loaded into
the MSVC IDE

documentation

Choosing and Configuring Your Target

Targets Available from the System Target File Browser (Continued)

Target/Code System Target | Template Makefile
Format File and Comments Reference
Real-Time ert.tlc ert_tornado.tmf Real-Time Workshop
Workshop Embedded Coder
Embedded Coder for documentation
Tornado (VxWorks)
Generic Real-Time | grt.tlc grt_default_tmf Chapter 3, “Generated
for PC/UNIX Code Formats”

Use mex -setup to

configure for Lcc,

Watcom, Borland, vc,

gce, Intel, and so on
Generic Real-Time | grt.tlc grt_msvc.tmf Chapter 3, “Generated

for Visual C/C++
Project Makefile

Code Formats”

Generic Real-Time
(dynamic) for
PC/UNIX

grt _malloc.tlc

grt malloc_default

tmf

Use mex -setup to
configure for Lcc,
Watcom, Borland, vc,
gce, and so on

Chapter 3, “Generated
Code Formats”

Generic Real-Time
(dynamic) for Visual
C/C++ Project
Makefile

grt _malloc.tlc

grt_malloc_msvc.tmf

Chapter 3, “Generated
Code Formats”

Rapid Simulation rsim.tlc rsim_default_tmf Chapter 12, “Running
Target (default for Use mex -setup to Rapid Simulations”
PC or UNIX) 2

configure
Rapid Simulation rsim.tlc rsim_watc.tmf Chapter 12, “Running
Target for Watcom Rapid Simulations”
Rapid Simulation rsim.tlc rsim_vc.tmf Chapter 12, “Running

Target for Visual
C/C++

Rapid Simulations”

2-7

2 Code Generation and the Build Process

Targets Available from the System Target File Browser (Continued)

Target/Code System Target | Template Makefile

Format File and Comments Reference

Rapid Simulation rsim.tlc rsim_intel.tmf Chapter 12, “Running
Target for Intel Rapid Simulations”
Rapid Simulation rsim.tlc rsim_bc.tmf Chapter 12, “Running
Target for Borland Rapid Simulations”
Rapid Simulation rsim.tlc rsim_lcc.tmf Chapter 12, “Running
Target for LCC Rapid Simulations”
Rapid Simulation rsim.tlc rsim_unix.tmf Chapter 12, “Running
Target for UNIX Rapid Simulations”

S-Function Target
for PC or UNIX

rtwsfcn.tlc

rtwsfcn_default_tmf

Use mex -setup to
configure

Chapter 11, “The
S-Function Target”

S-Function Target
for Watcom

rtwsfcn.tlc

rtwsfcn_watc.tmf

Chapter 11, “The
S-Function Target”

S-Function Target
for Visual C/C++

rtwsfcn.tlc

rtwsfcn_vc.tmf

Chapter 11, “The
S-Function Target”

S-Function Target
for Borland

rtwsfcn.tlc

rtwsfcn_bc.tmf

Chapter 11, “The
S-Function Target”

S-Function Target
for LCC

rtwsfcn.tlc

rtwsfcn_lcc.tmf

Chapter 11, “The
S-Function Target”

S-Function Target
for Intel

rtwsfcn.tlc

rtwsfcn_intel.tmf

Chapter 11, “The
S-Function Target”

S-Function Target
for UNIX

rtwsfcn.tlc

rtwsfcn_unix.tmf

Chapter 11, “The
S-Function Target”

Tornado (VxWorks)
Real-Time Target

tornado.tlc

tornado. tmf

Chapter 13, “Targeting
Tornado for Real-Time

Applications”
ASAM-ASAP2 Data | asap2.tlc asap2_default tmf Appendix A, “Blocks
Definition Target That Depend on Absolute
Time”

Choosing and Configuring Your Target

Targets Available from the System Target File Browser (Continued)

Target/Code System Target | Template Makefile

Format File and Comments Reference
Real-Time Windows | rtwin.tlc vtwin.tmf Real-Time Windows
Target for Open Target documentation
Watcom

Real-Time Windows | rtwin.tlc win_vc.tmf Real-Time Windows

Target for Visual
C/C++

Target documentation

xPC Target xpctarget.tlc xpc_default tmf xPC Target

for Watcom Xpc_vc.tmf documentation
C/C++,Visual xpc_watc.tmf

C/C++, or Intel xpc_intel.tmf

Embedded Target ti c2000 grt.tlc| tti c2000 grt.tmf Embedded Target for the

for the TI ti c2000 ert.tlc| ti c2000 ert.tmf TI TMS320C2000 DSP

TMS320C2000 DSP Platform documentation

Platform

Embedded Target ti c6000.tlc ti c6000.tmf Embedded Target for the

for the TI (GRT) ti c6000_ert.tmf TI TMS320C6000 DSP

TMS320C6000 DSP | ti_c6000 _ert.tlc Platform documentation

Platform

Embedded Target osekworks.tlc osek default tmf Embedded Target

for OSEK/VDX proosek.tlc for OSEK/VDX
documentation

Embedded Target
for Motorola
MPC555

mpc555exp.tlc
mpc555pil.tlc
mpc555rt.tlc

mpc555exp . tmf
mpc555exp_diab. tmf
mpc555pil. tmf
mpc555pil _diab.tmf
mpc555rt. tmf

Embedded Target for
Motorola MPC555
documentation

2-9

2 Code Generation and the Build Process

2-10

Targets Available from the System Target File Browser (Continued)

Target/Code System Target | Template Makefile
Format File and Comments Reference
Embedded Target hci12.tlc hc12_default tmf Embedded Target
for Motorola HC12 for Motorola HC12
documentation
Embedded Target c166.tlc c166.tmf Embedded Target
for Infineon C166® for Infineon C166
Microcontrollers Microcontrollers
documentation

Creating Custom Targets

You can create your own system target files to build custom targets that
interface with external code or operating environments. If you have in the
past created system target files, note that the form of callbacks has changed
between Versions 5 and 6 of Real-Time Workshop. See the Real-Time
Workshop Embedded Coder documentation for details, including how to make
your custom targets appear in the System Target File Browser and display
appropriate controls in panes of the Configuration Parameters dialog box.

Template Makefiles and Make Options

Real-Time Workshop includes a set of built-in template makefiles that are
designed to build programs for specific targets.

There are two types of template makefiles:

® Compiler-specific template makefiles are designed for use with a particular
compiler or development system.

By convention, compiler-specific template makefiles are named according to
the target and compiler (or development system). For example, grt_vc.tmf
is the template makefile for building a generic real-time program under
Visual C/C++; ert_lcc.tmf is the template makefile for building a
Real-Time Workshop Embedded Coder program under the Lcc compiler.

Choosing and Configuring Your Target

® Default template makefiles make your model designs more portable, by
choosing the correct compiler-specific makefile and compiler for your
installation. “Choosing and Configuring a Compiler” on page 2-19 describes
the operation of default template makefiles in detail.

Default template makefiles are named target_default_tmf. They

are M-files that, when run, select the appropriate TMF. For example,
grt_default tmf is the default template makefile for building a generic
real-time program; ert_default tmf is the default template makefile for
building a Real-Time Workshop Embedded Coder program.

You can supply options to makefiles by using arguments to the Make
command field in the general Real-Time Workshop pane of the
Configuration Parameters dialog box. Append the arguments after make rtw
(or make_xpc or other make command), as in the following example:

make rtw OPTS="-DMYDEFINE=1"
The syntax for make command options differs slightly for different compilers.

The following topics discuss compiler-specific template makefiles and
common options you can use with each. Complete details on the structure of
template makefiles are provided in the Real-Time Workshop Embedded Coder
documentation. This information is provided for those who want to customize
template makefiles.

¢ “Template Makefiles for UNIX” on page 2-12

e “Template Makefiles for Visual C/C++” on page 2-12

e “Template Makefiles for Watcom C/C++” on page 2-14

e “Template Makefiles for Borland C/C++” on page 2-15

e “Template Makefiles for LCC” on page 2-16

* “Enabling Real-Time Workshop to Build When Pathnames Contain Spaces”
on page 2-17

2-11

2 Code Generation and the Build Process

2-12

Template Makefiles for UNIX
The template makefiles for UNIX platforms are designed to be used with

GNU Make. These makefile are set up to conform to the guidelines specified
in the IEEE Std 1003.2-1992 (POSIX) standard.

® ert_unix.tmf

® grt_malloc_unix.tmf

® grt_unix.tmf

® rsim_unix.tmf

® rtwsfcn_unix.tmf
You can supply options by using arguments to the make command.

® OPTS — User-specific options, for example,

make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS— Optimization options. Default is -0. To enable debugging
specify as OPT_OPTS=-g. Because of optimization problems in IBM_RS, the
default is no optimization.

® CPP_OPTS — C++ compiler options.
® USER_SRCS — Additional user sources, such as files needed by S-functions.

® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for Visual C/C++

Real-Time Workshop offers two sets of template makefiles designed for use
with Visual C/C++.

Choosing and Configuring Your Target

To build an executable within the Real-Time Workshop build process, use one

of the target vc.tmf template makefiles:

® ert_vc.tmf

® grt_malloc_vc.tmf

® grt_vc.tmf

® rsim_vc.tmf

® rtwsfcn_vc.tmf

You can supply options by using arguments to the make command.

® OPT_OPTS — Optimization option. Default is -02. To enable debugging
specify as OPT_OPTS=-Zd.

® OPTS — User-specific options.

® CPP_OPTS — C++ compiler options.

® USER_SRCS — Additional user sources, such as files needed by S-functions.

® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

These options are also documented in the comments at the head of the
respective template makefiles.

Visual C/C++ Code Generation Only. To create a Visual C/C++ project
makefile (model.mak) without building an executable, use one of the
target _msvc.tmf template makefiles:

® ert_msvc.tmf

® grt_malloc_msvc.tmf

® grt_msvc.tmf

These template makefiles are designed to be used with nmake, which is
bundled with Visual C/C++.

2-13

2 Code Generation and the Build Process

You can supply the following options by using arguments to the nmake
command:

® OPTS — User-specific options, for example,

make rtw OPTS="/D MYDEFINE=1"
® USER_SRCS — Additional user sources, such as files needed by S-functions.
® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for Watcom C/C++
Real-Time Workshop provides template makefiles to create an executable for

Windows using Watcom C/C++. These template makefiles are designed to be
used with wmake, which is bundled with Watcom C/C++.

Note The Watcom C compiler is no longer available from the manufacturer.
However, Real-Time Workshop continues to ship with Watcom-related
template makefiles.

® ert_watc.tmf

® grt_malloc_watc.tmf
® grt_watc.tmf

® rsim_watc.tmf

® rtwsfcn_watc.tmf

2-14

Choosing and Configuring Your Target

You can supply options by using arguments to the make command. Note that
the location of the quotes is different from the other compilers and make
utilities discussed in this chapter.

® OPTS — User-specific options, for example,

make_rtw "OPTS=-DMYDEFINE=1"

® OPT_OPTS — Optimization options. The default optimization option is
-oxat. To turn off optimization and add debugging symbols, specify the -d2
compiler switch in the make command, for example,

make rtw "OPT_OPTS=-d2"

® CPP_OPTS — C++ compiler options.
® USER_0BJS — Additional user objects, such as files needed by S-functions.

® USER_PATH — The directory path to the source (.c or .cpp) files that are
used to create any .obj files specified in USER_0BJS. Multiple paths must
be separated with a semicolon. For example,

USER_PATH="path1;path2"

® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iinclude-path1 -Iinclude-path2"

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for Borland C/C++

Real-Time Workshop provides template makefiles to create an executable
for Windows using Borland C/C++.

® ert_bc.tmf
® grt_bc.tmf
® grt_malloc_bc.tmf

2-15

2 Code Generation and the Build Process

2-16

® rsim_bc.tmf

® rtwsfcn_bc.tmf
You can supply these options by using arguments to the make command:

® OPTS — User-specific options, for example,

make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS — Optimization options. Default is none. To turn off optimization
and add debugging symbols, specify the -v compiler switch in the make
command.

make_rtw OPT_OPTS="-v"

® CPP_OPTS — C++ compiler options.
® USER_0BJS — Additional user objects, such as files needed by S-functions.

® USER_PATH — The directory path to the source (.c or .cpp) files that are
used to create any .obj files specified in USER_OBJS. Multiple paths must
be separated with a semicolon. For example,

USER_PATH="path1;path2"

® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iinclude-path1 -Iinclude-path2"

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for LCC

Real-Time Workshop provides template makefiles to create an executable for
Windows using Lcc compiler Version 2.4 and GNU Make (gmake).

® ert_lcc.tmf

® grt_lcc.tmf

® grt_malloc_lcc.tmf

Choosing and Configuring Your Target

® rsim_lcc.tmf

® rtwsfcn_lcc.tmf
You can supply options by using arguments to the make command:

® OPTS — User-specific options, for example,

make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS — Optimization options. Default is none. To enable debugging,
specify -g4 in the make command:

make_rtw OPT_OPTS="-g4"

® CPP_OPTS — C++ compiler options.
® USER_SRCS — Additional user sources, such as files needed by S-functions.

® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

For Lec, have a / as file separator before the filename instead of a \, for
example, d:\work\proj1/myfile.c.

These options are also documented in the comments at the head of the
respective template makefiles.

Enabling Real-Time Workshop to Build When Pathnames
Contain Spaces

Real-Time Workshop is able to handle pathnames that include spaces. Spaces
might appear in the pathname from several sources:

® Your MATLAB installation directory
® The current MATLAB directory in which you initiate a build

® A compiler you are using for a Real-Time Workshop build

If your work environment includes one or more of the preceding scenarios, use
the following support mechanisms, as necessary and appropriate:

2-17

2 Code Generation and the Build Process

¢ Add the following code to your template makefile (.tmf):

ALT_MATLAB_ROOT | >ALT_MATLAB_ROOT< |

ALT_MATLAB_BIN = |>ALT_MATLAB_BIN<|
'if "$(MATLAB_ROOT)" != "$(ALT_MATLAB_ROOT)"
MATLAB_ROOT = $(ALT_MATLAB_ROOT)

lendif

'if "$(MATLAB_BIN)" != "$(ALT_MATLAB BIN)"
MATLAB_BIN = $(ALT_MATLAB BIN)

lendif

This code fragment replaces MATLAB_ROOT with ALT_MATLAB_ROOT when the
values of the two tokens are not equal, indicating the pathname for your
MATLAB installation directory includes spaces. Likewise, ALT_MATLAB_BIN
replaces MATLAB_BIN.

Note the preceding code is specific to nmake. See the supplied Real-Time
Workshop template make files for platform-specific examples.

e Use the MATLAB command rtw_alt pathname to translate fully qualified
pathnames into standard DOS 8.3 style names. Specify the command with
the pathname you want to translate.

For example, to translate the pathname D: \Applications\Common Files,
specify the following:

rtw_alt pathname('D:\Applications\Common Files')
ans =
D:\APPLIC~1\COMMON~1

* When using operating system commands, such as system or dos, enclose
pathnames that specify executables or command parameters in double
quotes (" "). For example,

system('dir "D:\Applications\Common Files"')

2-18

Choosing and Confiquring a Compiler

Choosing and Configuring a Compiler

The Real-Time Workshop build process depends upon the correct installation
of one or more supported compilers. Note that compiler, in this context,
refers to a development environment containing a linker and make utility, in
addition to a high-level language compiler.

The build process also requires the selection of a template makefile. The
template makefile determines which compiler runs, during the make phase of
the build, to compile the generated code.

To determine which template makefiles are appropriate for your compiler and
target, see Targets Available from the System Target File Browser on page 2-6.

See the following topics for more detail on choosing and configuring a compiler:

* “Real-Time Workshop and ANSI C/C++ Compliance” on page 2-19

® “C++ Target Language Considerations” on page 2-20

® “Choosing and Configuring Your Compiler on Windows” on page 2-20
® “Choosing and Configuring Your Compiler on UNIX” on page 2-21

¢ “Including S-Function Source Code” on page 2-21

Real-Time Workshop and ANSI C/C++ Compliance

Real-Time Workshop generates code that is compliant with the following
standards:

Language Supported Standard
C ISO/IEC 9899:1990, also known as C89/C90
C++ ISO/IEC 14882:2003

Code generated by Real-Time Workshop from the following sources is ANSI
C/C++ compliant:

® Simulink built-in block algorithmic code

2-19

2 Code Generation and the Build Process

¢ Real-Time Workshop and Real-Time Workshop Embedded Coder system
level code (task ID [TID] checks, management, functions, and so on)

® Code from other blocksets (Simulink Fixed Point, Communications, and
S0 on)

® Code from other code generators (Stateflow, Embedded MATLAB functions)
Additionally, Real-Time Workshop can incorporate code from

* Embedded targets (for example, startup code, device driver blocks)

e User-written S-functions or TLC files

Note Coding standards for these two sources are beyond the control of
Real-Time Workshop, and can be a source for compliance problems, such as
code that uses C99 features not supported in the ANSI C, C89/C90 subset.

C++ Target Language Considerations

To use the C++ target language support, you might need to configure
Real-Time Workshop to use the appropriate compiler. For example, on
Windows the default compiler is the Lcc C compiler shipped with MATLAB,
which does not support C++. If you do not configure Real-Time Workshop to
use a C++ compiler before you specify C++ for code generation, the following
build error message appears:

The specified Real-Time Workshop target is configured to generate
C++, but the C-only compiler, LCC, is the default compiler. To
specify a C++ compiler, enter 'mex -setup' at the command prompt.
To generate C code, click (Open) to open the Configuration
Parameters dialog and set the target language to C.

Choosing and Configuring Your Compiler on
Windows

On Windows platforms, you can use the Lce C compiler shipped with
MATLAB, or you can install and use one of the supported Windows compilers.

Real-Time Workshop will choose a compiler based on the template makefile
(TMF) name specified on the Real-Time Workshop pane of the Configuration

2-20

Choosing and Confiquring a Compiler

Parameters dialog box. The simplest approach is to let Real-Time Workshop
pick a compiler based on your default compiler, as set up using the mex
-setup function. When you use this approach, you do not need to define
compiler-specific environment variables, and Real-Time Workshop determines
the location of the compiler using information from the mexopts.bat file
located in the preferences directory (use the prefdir command to verify this
location).

To use this approach, the TMF filename specified must be an M-file that
returns default compiler information by using the mexopts.bat file. Most
targets provided by Real-Time Workshop use this approach, as when
grt_default tmf or ert_default tmf is specified as the TMF name.

Alternatively, the name provided for the TMF can be a compiler-specific
template makefile, for example grt_vc.tmf, which designates the Visual
C/C++ compiler. When you provide a compiler-specific TMF filename,
Real-Time Workshop uses the default mexopts.bat information to locate

the compiler if mex has been set up for the same compiler as the specified
TMF. If mex is not set up with a default compiler, or if it does not match the
compiler specified by the TMF, then an environment variable must exist

for the compiler specified by the TMF. The environment variable required
depends on the compiler. See “Third-Party Windows Compiler Configuration”
in Getting Started for details.

Choosing and Configuring Your Compiler on UNIX

On UNIX, the Real-Time Workshop build process uses the default compiler.
For all platforms except SunOS, cc is the default compiler. On SunOS, the
default is gcc.

You should choose the UNIX template makefile that is appropriate to your
target. For example, grt_unix.tmf is the correct template makefile to build a
generic real-time program under UNIX.

Including S-Function Source Code

When Real-Time Workshop builds models with S-functions, source code for
the S-functions can be either in the current directory or in the same directory
as their MEX-file. Real-Time Workshop adds an include path to the generated
makefiles whenever it finds a file named sfncname . h in the same directory

2-21

2 Code Generation and the Build Process

that the S-function MEX-file is in. This directory must be on the MATLAB
path.

Similarly, Real-Time Workshop adds a rule for the directory when it finds a file
sfncname . c (or .cpp) in the same directory as the S-function MEX-file is in.

2-22

Adjusting Simulation Configuration Parameters for Code Generation

Adjusting Simulation Configuration Parameters for Code

Generation

When you are ready to generate code for a model, consider adjusting the
model’s simulation configuration parameters. One way of adjusting the
parameters is to modify option settings in the Configuration Parameters
dialog box. Alternatively, you can use the set_param function. The user
interface options and associated parameters related to Real-Time Workshop
and Real-Time Workshop Embedded Coder are described in “Configuration
Parameter Reference” in the Real-Time Workshop Reference.

The following topics discuss simulation parameter adjustments to consider for
code generation:

® “Solver Options” on page 2-23

e “Data Import and Export Options” on page 2-25

® “Optimization Options” on page 2-29

* “Diagnostics Options” on page 2-43

¢ “Hardware Implementation Options” on page 2-45

® “Model Referencing Options” on page 2-48

® “Simulink and Real-Time Workshop Interactions to Consider” on page 2-49

Note When you change a check box, menu selection, or edit field in any
Configuration Parameters dialog box, the white background of the element
you altered turns to light yellow to indicate that an unsaved change has been
made. When you click OK, Cancel, or Apply, the background resets to white.

Solver Options

The Solver pane of the Configuration Parameters dialog box is shown below
with a fixed-step solver selected.

2-23

2 Code Generation and the Build Process

2-24

Solver

— Simulation tim

Start time: ID.D Stop time: |1 0o

—Solver option:
Type:l Fixed-step LI Solver:l dizcrete [no continuous states] LI
Periodic zample time constraint: I Unconstrained LI

Fixed-step size [fundamental zample time]: ID.D‘I

Tasking mode for periodic zample times: I Auto LI
[~ Higher priority value indicates higher task priority

[~ Automatically handle data transfers bebween tasks

Options to consider adjusting for code generation on this pane include

e “Start and Stop Times” on page 2-24
* “Type” on page 2-25
e “Tasking Mode for Periodic Sample Times” on page 2-25

Start and Stop Times

The stop time must be greater than or equal to the start time. If the stop time
is zero, or if the total simulation time (Stop minus Start) is less than zero,
the generated program runs for one step. If the stop time is set to inf, the
generated program runs indefinitely.

When using the GRT or Tornado targets, you can override the stop time when
running a generated program from the Windows command prompt or UNIX
command line. To override the stop time that was set during code generation,
use the -tf switch.

model -tf n

The program runs for n seconds. If n = inf, the program runs indefinitely.
See Getting Started in the Real-Time Workshop documentation for an
example of the use of this option.

Certain blocks have a dependency on absolute time. If you are designing a
program that is intended to run indefinitely (Stop time = inf), and your
generated code does not use the rtModel data structure (that is, it uses
simstructs instead), you must not use these blocks. See Appendix A, “Blocks

Adjusting Simulation Configuration Parameters for Code Generation

That Depend on Absolute Time” for a list of blocks that can potentially
overflow timers.

If you know how long an application that depends on absolute time needs to
run, you can ensure that timers do not overflow and that they use optimal
word sizes by specifying the Application lifespan parameter on the
Optimization pane. See “Application Lifespan” on page 2-35 for details.

Type

If you are using an S-function or an RSim target, you can specify either
a fixed-step solver or a variable-step solver. All other targets require a
fixed-step solver.

Tasking Mode for Periodic Sample Times

Real-Time Workshop supports both single- and multitasking modes. See
Chapter 8, “Models with Multiple Sample Rates” for details.

Data Import and Export Options

The Data Import/Export pane of the Configuration Parameters dialog box
is shown below.

Data Import/E xport

—Load from work spac
™ Input: |[t, u]
I~ Iritial state: |x|nitia|

—Save to workspac

¥ Time: Itout
[~ States: Ixout
v Output: |y0ut
I~ Final states: |xFinaI

¥ Signal logging: |sigsD ut

—Save option:
¥ Limit data points to last: |1 nno Decimation: |1
Farmat: I Array - I

Methods by which a Real-Time Workshop generated program can save data to
a MAT-file for analysis include

2-25

2 Code Generation and the Build Process

2-26

* “Logging States, Time, and Outputs by Using the Data Import/Export
Pane” on page 2-26

® “Logging Data with Scope and To Workspace Blocks” on page 2-28
* “Logging Data with To File Blocks” on page 2-28
® “Data Logging Differences in Single- and Multitasking Models” on page 2-28

See “Data Logging” in Getting Started for a tutorial on Real-Time Workshop
data logging features.

Note Data logging is available only for targets that have access to a file
system. In addition, only the RSim target executables are capable of accessing
MATLAB workspace data; GRT and ERT targets cannot.

Logging States, Time, and Outputs by Using the Data
Import/Export Pane

The Data Import/Export pane enables a generated program to save system
states, outputs, and simulation time at each model execution time step. The
data is written to a MAT-file, named (by default) model .mat.

Before using this data logging feature, you should learn how to configure
a Simulink model to return output to the MATLAB workspace. This is
discussed in “Exporting Data to the MATLAB Workspace” in the Simulink
documentation.

For each workspace return variable that you define and enable, Real-Time
Workshop defines a MAT-file variable. For example, if your model saves
simulation time to the workspace variable tout, your generated program logs
the same data to a variable named (by default) rt_tout.

Real-Time Workshop logs the following data:

e All root Outport blocks
The default MAT-file variable name for system outputs is rt_yout.

The sort order of the rt_yout array is based on the port number of the
Outport block, starting with 1.

Adjusting Simulation Configuration Parameters for Code Generation

e All continuous and discrete states in the model
The default MAT-file variable name for system states is rt_xout.
e Simulation time

The default MAT-file variable name for simulation time is rt_tout.
Other considerations for code generation include

® “Overriding the Default MAT-File Name” on page 2-27
® “Overriding the Default MAT-File Variable Names” on page 2-27

Overriding the Default MAT-File Name. The MAT-file name defaults to
model.mat. To specify a different filename,

1 Choose Configuration Parameters from the Simulation menu. The
dialog box opens. Click Real-Time Workshop.

2 Append the following option to the existing text in the Make command
field.

OPTS="-DSAVEFILE=filename"

Overriding the Default MAT-File Variable Names. By default, Real-Time
Workshop prefixes the string rt_ to the variable names for system outputs,
states, and simulation time to form MAT-file variable names. To change this
prefix,

1 Choose Configuration Parameters from the Simulation menu. The
dialog box opens. Click Real-Time Workshop.

2 In the System target file field, select grt.tlc.
3 Under Real-Time Workshop, select the Interface subpane.

4 Select a prefix (rt_) or suffix (_rt) from the MAT-file variable name
modifier field, or choose none for no prefix (other targets may or may not
have this option).

2-27

2 Code Generation and the Build Process

2-28

Logging Data with Scope and To Workspace Blocks

Real-Time Workshop also logs data from these sources:

e All Scope blocks that have the Save data to workspace option enabled

You must specify the variable name and data format in each Scope block’s
dialog box.

e All To Workspace blocks in the model

You must specify the variable name and data format in each To Workspace
block’s dialog box.

The variables are written to model .mat, along with any variables logged from
the Workspace 1/0 pane.

Logging Data with To File Blocks

You can also log data to a To File block. The generated program creates a
separate MAT-file (distinct from model .mat) for each To File block in the
model. The file contains the block’s time and input variable(s). You must
specify the filename, variable names, decimation, and sample time in the To
File block’s dialog box.

Note Models referenced by Model blocks do not perform data logging in that
context except for states, which you can include in the state logged for top
models. Code generated by Real-Time Workshop for referenced models does
not perform data logging to MAT-files.

Data Logging Differences in Single- and Multitasking Models

When logging data in single-tasking and multitasking systems, you will notice
differences in the logging of

® Noncontinuous root Outport blocks

® Discrete states

Adjusting Simulation Configuration Parameters for Code Generation

In multitasking mode, the logging of states and outputs is done after the first
task execution (and not at the end of the first time step). In single-tasking
mode, Real-Time Workshop logs states and outputs after the first time step.

See “Data Logging in Single-Tasking and Multitasking Model Execution”
on page 7-15 for more details on the differences between single-tasking and
multitasking data logging.

Note The rapid simulation target (RSim) provides enhanced logging options.
See Chapter 12, “Running Rapid Simulations” for more information.

Optimization Options
The following figure shows the Optimization pane, which includes several

options that affect the performance of generated code. You can use these
options to optimize memory usage, code size, and efficiency.

Optimization

—Simulation and code generation

I Block reduction optimization ¥ Conditional input branch execution

I~ Implement logic signals as boolean data [vs. double]. ¥ Signal storage reuse

™ Inline parameters Configure ... |

Application lifespan [days]linf

—LCode generation

—Signal

¥ Enable local block outputs ¥ Reuse block outputs
I lgnore integer downcasts in folded expressions [[nling invariant signals

¥ Eliminate superfluous temporary variables [Expression folding)

Loop unrolling threshold: |5

—Integer and fixed-point

I~ Remove code fram floating-paoint to integer conversions that wiaps out-of-range values

When Real-Time Workshop Embedded Coder is installed on your system,
the Optimization pane expands to include several additional options. For
details, see “Optimization Options” on page 2-29 in the Real-Time Workshop
Embedded Coder documentation.

2-29

2 Code Generation and the Build Process

2-30

When you change targets, other options might appear lower down on the
Optimization pane. For examples of ERT options, see the Real-Time
Workshop Embedded Coder documentation.

Options of particular interest for code generation include

* “Block Reduction Optimization” on page 2-30

® “Conditional Input Branch Execution” on page 2-32

¢ “‘Implement Logic Signals as Boolean Data” on page 2-33

® “Signal Storage Reuse” on page 2-33

® “Inline Parameters” on page 2-33

e “Application Lifespan” on page 2-35

e “Enable Local Block Outputs” on page 2-35

e “Reuse Block Outputs” on page 2-36

® “Ignore Integer Downcasts in Folded Expressions” on page 2-36
® “Inline Invariant Signals” on page 2-36

¢ “Eliminate Superfluous Temporary Variables (Expression Folding)” on page
2-38

® “Loop Unrolling Threshold” on page 2-38

* “Remove Code from Floating-Point to Integer Conversions That Wraps
Out-of-Range Values” on page 2-40

® “Optimization Option Dependencies” on page 2-41

For a summary of option dependencies, see “Optimization Option
Dependencies” on page 2-41. For more detail and examples, refer to Chapter
9, “Optimizing a Model for Code Generation”.

Block Reduction Optimization

When you select this check box, Simulink collapses certain groups of blocks
into a single, more efficient block, or removes them entirely. This results
in faster model execution during simulation and in generated code. The
appearance of the source model does not change.

Adjusting Simulation Configuration Parameters for Code Generation

By default, the Block reduction optimization check box is selected.
The types of available block reduction optimizations include

® “Accumulator Folding” on page 2-31
* “Removal of Redundant Type Conversions” on page 2-31

¢ “Dead Code Elimination” on page 2-31

Accumulator Folding. Simulink recognizes certain constructs such as
accumulators, and reduces them to a single block. For a detailed example, see
“Accumulators” on page 9-27.

Removal of Redundant Type Conversions. Unnecessary type conversion
blocks are removed. For example, an int type conversion block whose input
and output are of type int is redundant and is removed.

Dead Code Elimination. Any blocks or signals in an unused code path
are eliminated from the generated code if you select the Block reduction
optimization check box. The following conditions need to be met for a block
to be considered part of an unused code path:

o All signal paths for the block end with a block that does not execute.
Examples of blocks that do not execute include Terminator blocks, disabled
Assertion blocks, S-Function blocks configured for block reduction, and To
Workspace blocks for which MAT-file logging is disabled for code generation.

® No signal paths for the block include global signal storage downstream
from the block.

Tunable parameters do not prevent a block from being reduced by dead code
elimination.

Consider the signal paths in the following block diagram.

2-31

2 Code Generation and the Build Process

Co—bT (D

In1 Outt
MeverbeadCodeGain

i

InZ -
AlwaysbeadCodeGain Terminator

o—sfi>————]

In2

Gain Scope

If you select Block reduction optimization, Real-Time Workshop responds
to each signal path as follows:

For Signal Real-Time Workshop...
Path...
Inl to Outl Always generates code because dead code elimination

conditions are not met.

In2 to Terminator | Never generates code because dead code elimination
conditions are met.

In3 to Scope Generates code if MAT-file logging is enabled and
eliminates code if MAT-file logging is disabled.

Conditional Input Branch Execution

This optimization factors out unneeded code that is upstream from Switch
blocks. When Conditional input branch optimization is on, instead of
executing all blocks driving the Switch block input ports at each time step,
only the blocks required to compute the control input and the data input
selected by the control input are executed.

You control conditional input branch optimization by selecting and deselecting
the Conditional input branch execution check box on the Optimization

pane of the Configuration Parameters dialog box.

For more information on using this optimization, see “Conditional Input
Execution” on page 9-14.

2-32

Adjusting Simulation Configuration Parameters for Code Generation

Implement Logic Signals as Boolean Data

By default, Simulink does not signal an error when it detects that double
signals are connected to blocks that prefer Boolean input. This ensures
compatibility with models created by earlier versions of Simulink that support
only double data types. You can enable strict Boolean type checking by
selecting the Implement logic signals as boolean data (versus double)
check box.

Selecting this check box is recommended. Generated code requires less
memory because a Boolean signal typically requires one byte of storage while
a double signal requires eight bytes of storage.

Signal Storage Reuse

This option instructs Real-Time Workshop to reuse signal memory. This
reduces the memory requirements of your real-time program. You should
select this option. Disabling Signal storage reuse makes all block outputs
global and unique, which in many cases significantly increases RAM and
ROM usage.

For more details on the Signal storage reuse option, see “Signal Storage,
Optimization, and Interfacing” on page 5-27.

Note Selecting Signal storage reuse also enables the Enable local
block outputs option and the Reuse block outputs option in the Code
generation Signals section of the Optimization pane. See “Enable Local
Block Outputs” on page 2-35 and “Reuse Block Outputs” on page 2-36.

Inline Parameters
Selecting this option has two effects:

® Real-Time Workshop uses the numerical values of model parameters,
instead of their symbolic names, in generated code.

If the value of a parameter is a workspace variable, or an expression
including one or more workspace variables, the variable or expression is
evaluated at code generation time. The hard-coded result value appears
in the generated code. An inlined parameter, because it has in effect been

2-33

2 Code Generation and the Build Process

2-34

transformed into a constant, is no longer tunable. That is, it is not visible
to externally written code, and its value cannot be changed at run-time.

® The Configure button becomes enabled. Clicking the Configure button
opens the Model Parameter Configuration dialog box.

The Model Parameter Configuration dialog box lets you remove individual
parameters from inlining and declare them to be tunable variables (or
global constants). When you declare a parameter tunable, Real-Time
Workshop generates a storage declaration that allows the parameter to be
interfaced to externally written code. This enables your hand-written code
to change the value of the parameter at run-time.

The Model Parameter Configuration dialog box lets you improve overall
efficiency by inlining most parameters, while at the same time retaining
the flexibility of run-time tuning for selected parameters.

See “Parameters: Storage, Interfacing, and Tuning” on page 5-2 for more
information on interfacing parameters to externally written code.

The Inline parameters check box also instructs Simulink to propagate
constant sample times. Simulink computes the output signals of blocks
that have constant sample times once during model startup. This improves
performance because such blocks do not compute their outputs at every time
step of the model.

You can select the Inline invariant signals code generation option (which
also places constant values in generated code) only when Inline parameters
is on. See “Inline Invariant Signals” on page 2-36.

Referenced Models. When a top-level model uses referenced models,

e All referenced models must specify Inline parameters to be on

® The top-level model can specify Inline parameters to be on or off .

When the top-level model specifies Inline parameters to be on, you cannot
use the Model Parameter Configuration dialog box to tune parameters that
are passed to referenced models. To tune such parameters, you must declare
them in the referenced model’s workspace, and then pass run-time values
(or expressions) for them in argument lists specified for each Model block

Adjusting Simulation Configuration Parameters for Code Generation

that references that model. See “Using Model Arguments” in the Simulink
documentation for specific details.

Application Lifespan

The Application lifespan (days) field lets you specify how long an
application that contains blocks that depend on elapsed time should be able to
execute before timer overflow. Specifying a lifespan determines the word size
used by timers in the generated code, and can lower RAM usage.

Application lifespan, when combined with the step size of each task,
determines the data type used for integer absolute time for each task, as
follows:

¢ If your model does not require absolute time, this option affects neither
simulation nor the generated code.

¢ If your model requires absolute time, this option optimizes the word size
used for storing integer absolute time in generated code. This ensures
that timers do not overflow within the lifespan you specify. If you set
Application lifespan to Inf, two uint32 words are used.

¢ If your model contains fixed-point blocks that require absolute time, this
option affects both simulation and generated code.

Using 64 bits to store timing data enables models with a step size of 0.001
microsecond (10E-09 seconds) to run for more than 500 years, which would
rarely be required. To run a model with a step size of one millisecond (0.001
seconds) for one day would require a 32-bit timer (but it could continue
running for 49 days).

Enable Local Block Outputs

When this option is selected, block signals are declared locally in functions
instead of being declared globally (when possible).

Enable local block outputs is available only when you select Signal
storage reuse.

2-35

2 Code Generation and the Build Process

2-36

For more information on the use of the Enable local block outputs option,
see “Signal Storage, Optimization, and Interfacing” on page 5-27. Also see
“First Look at Generated Code” in Getting Started.

Reuse Block Outputs
When the Reuse block output check box is selected (the default) Real-Time

Workshop reuses signal memory whenever possible. When Reuse block
output is cleared, signals are stored in unique locations.

Reuse block output is available only when you select Signal storage
reuse.

See “Signal Storage, Optimization, and Interfacing” on page 5-27 for more
information (including generated code example) on Reuse block output and
other signal storage options.

Ignore Integer Downcasts in Folded Expressions

This option specifies how Real-Time Workshop should handle 8-bit
operations on 16-bit microprocessors and 8- and 16-bit operations on 32-bit
microprocessors. To ensure consistency between simulation and code
generation, the results of 8 and 16-bit integer expressions must be explicitly
downcast. Selecting this option improves code efficiency by avoiding casts
of intermediate variables. See “Expression Folding” on page 9-7 for more
information and examples.

Inline Invariant Signals

An invariant signal is a block output signal that does not change during
Simulink simulation. For example, the signal S3 in this block diagram is an
invariant signal.

Adjusting Simulation Configuration Parameters for Code Generation

1

Constant
% >|> -
) Out1
Gain
2
Constant1

For the model above, if you select Inline invariant signals on the
Optimization pane, Real-Time Workshop inlines the invariant signal S3
in the generated code.

Note that an invariant signal is not the same as an invariant constant. (See
“ Optimization Pane” in the Simulink documentation for information on
invariant constants.) In the preceding example, the two constants (1 and 2)
and the gain value of 3 are invariant constants. To inline these invariant
constants, select Inline parameters.

The Ignore integer downcasts in folded expressions option performs
downcasts in expressions.

Note If your model contains Model blocks, Inline parameters must be
on for all referenced models. If a referenced model does not have Inline
Parameters set to on, Simulink temporarily enables this option while
generating code for the referenced model, then turns it off again when the
build completes. Thus the referenced model is left in its previous state and
need not be resaved. For the top-level model, Inline parameters can be
either on or off.

2-37

2 Code Generation and the Build Process

2-38

Eliminate Superfluous Temporary Variables (Expression
Folding)

The Eliminate superfluous temporary variables (Expression folding)
option enables expression folding.

This option is available only when you select Signal storage reuse.

For details on using this option, see “Expression Folding” on page 9-7.

Loop Unrolling Threshold

The Loop unrolling threshold field on the Optimization pane determines
when a wide signal or parameter should be wrapped into a for loop and when
it should be generated as a separate statement for each element of the signal.
The default threshold value is 5.

For example, consider the model below:

ﬁu foo ’l}hl:l

Sine Wiave ain Scope

The gain parameter of the Gain block is the vector myGainVec.

Adjusting Simulation Configuration Parameters for Code Generation

Gai
’V Element-wize gain [y = K.*u] or matrix gain [= K*u or p = uk].

ISignaI data types IParameter data types I

Im_l,lG ainvec

Multiplication: I Element-wisefk."u] LI

Sample time [-1 for inherited]:

|1

Ok I Lancel | Help | Apply |

Assume that the loop unrolling threshold value is set to the default, 5.

If myGainVec is declared as
myGainVec = [1:10];

an array of 10 elements, myGainVec _P.Gain_Gain[], is declared within the
Parameters_model data structure. The size of the gain array exceeds the loop
unrolling threshold. Therefore, the code generated for the Gain block iterates
over the array in a for loop, as shown in the following code fragment:

{
int32 T i1;
/* Gain: '<Root>/Gain' */
for(i1=0; i1<10; i1++) {
myGainVec_B.Gain_f[i1] = rtb_foo *
myGainVec_P.Gain_Gain[i1];
}
}

If myGainVec is declared as

myGainVec = [1:3];

2-39

2 Code Generation and the Build Process

2-40

an array of three elements, myGainVec P.Gain_Gain[], is declared within
the Parameters data structure. The size of the gain array is below the loop
unrolling threshold. The generated code consists of inline references to each
element of the array, as in the code fragment below.

/* Gain: '<Root>/Gain' */
myGainVec_B.Gain_f[0] = rtb_foo * myGainVec_P.Gain_Gain[O0];
myGainVec_B.Gain_f[1] rtb_foo * myGainVec_P.Gain_Gain[1];
myGainVec_B.Gain_f[2] rtb_foo * myGainVec_P.Gain_Gain[2];

See the Target Language Compiler documentation for more information on
loop rolling.

Note When a model includes Stateflow charts or Embedded MATLAB
Function blocks, a set of Stateflow optimizations appears on the
Optimization pane. The settings you make for the Stateflow options also
apply to all Embedded MATLAB Function blocks in the model. This is because
the Embedded MATLAB Function blocks and Stateflow are built on top of the
same technology and share a code base. You do not need a Stateflow license to
use Embedded MATLAB Function blocks.

Remove Code from Floating-Point to Integer Conversions That
Wraps Out-of-Range Values

The Remove code from floating-point to integer conversions that
wraps out-of-range values option in the Integer and fixed-point section
of the Optimization pane causes Real-Time Workshop to remove code that
ensures that execution of the generated code produces the same results as
simulation when out-of-range conversions occur. This reduces the size and
increases the speed of the generated code at the cost of potentially producing
results that do not match simulation in the case of out-of-range values.

Note Enabling this option affects code generation results only for
out-of-range values and cannot cause code generation results to differ from
simulation results for in-range values.

Adjusting Simulation Configuration Parameters for Code Generation

Consider selecting this option if code efficiency is critical to your application
and the following conditions are true for at least one block in the model:

¢ Computing the block’s outputs or parameters involves converting
floating-point data to integer or fixed-point data.

® The block’s Saturate on integer overflow option is disabled.

The following code fragment shows the code generated for a conversion with
the Remove code from floating-point to integer conversions that
wraps out-of-range values option disabled:

_fixptlowering0 = (rtb_Switch[i1] + 9.0) / 0.09375;
_fixptlowering1l = fmod(_fixptlowering0 >= 0.0 ? floor(_fixptlowering0) :

ceil(_fixptlowering0), 4.2949672960000000E+009);

if (_fixptlowering1 < -2.1474836480000000E+009) {
_fixptlowering1l += 4.2949672960000000E+009;

} else if(_fixptloweringl >= 2.1474836480000000E+009) {
_fixptlowering1l -= 4.2949672960000000E+009;

}

cg_in_0_20_0[i1] = (int32_T)_fixptloweringi;

The code generator applies the fmod function to handle out-of-range
conversion results.

The code generated when you select the optimization option follows:

cg_in 0 20 0[i1] = (int32_T)((rtb_Switch[i1] + 9.0) / 0.09375);

Optimization Option Dependencies

Several options available on the Optimization pane have dependencies on
settings of other options. The following dependency table summarizes these
option dependencies.

Option

Dependencies? Dependency Details

Block reduction optimization No

2-41

2 Code Generation and the Build Process

Option

Conditional input branch
execution

Implement logic signals as
boolean data (vs. double)

Signal storage reuse

Inline parameters

Application lifespan (days)

Parameter structure (ERT
targets only)

Enable local block outputs
Reuse block outputs

Ignore integer downcasts in
folded expressions

Inline invariant signals

Eliminate superfluous
temporary variables
(Expression folding)

Loop unrolling threshold

Remove root level I/0 zero
initialization (ERT targets only)

Use memset to initialize floats
and doubles to 0.0 (ERT targets
only)

Remove internal state zero
initialization (ERT targets only)

Dependencies?
No

Yes
Yes
No

Yes
Yes

No

No

No

Optimize initialization code for Yes

model reference (ERT targets
only)

Dependency Details

Disable for models created with a
version of Simulink that supports only
signals of type double

Disable for referenced models in a
model reference hierarchy

Enabled by Inline parameters

Enabled by Signal storage reuse
Enabled by Signal storage reuse

Enabled by Inline parameters

Enabled by Signal storage reuse

Disable if model includes an enabled
subsystem and the model is referred to
from another model with a Model block

Adjusting Simulation Configuration Parameters for Code Generation

Option Dependencies? Dependency Details

Remove code from No
floating-point to integer
conversions that wrap

out-of-range values

Remove code that protects No
against division arithmetic
exceptions (ERT targets only)

Diagnostics Options

The figure below shows the main Diagnostics pane. This pane specifies what
action should be taken when various model conditions, such as unconnected
ports, are encountered. You can specify whether to ignore a given condition,
issue a warning, or raise an error. If an error condition is encountered during
a build, the build is terminated.

Diagnostics

Salver I Sample Time | [rata W alidity | Type Conversion | Connectivity | Compatibility ModeIHefern<|>

Algebraic loop: I warning
Minimize algebraic loop: I warning
Block. priority violation: I warning
Min step size violation: I warning

Consecutive zera crossings violation: I eror

Unspecified inheritability of sample time:l warning

Solver data inconsistency: I none

Automatic zolver parameter selection: I warning

L Leflef L LefLef e Lef L

Extraneous discrete derivative signals: I eror

A specific use of the diagnostics options for code generation is to control the
behavior of assertion blocks. The Model Verification block enabling menu
in the Data Validity subpane specifies whether model verification blocks
such as Assert, Check Static Gap, and related range check blocks are included,
excluded, or default to their local settings. The diagnostic has the same effect
on code generated by Real-Time Workshop as it does on simulation behavior.

Settings are

2-43

2 Code Generation and the Build Process

2-44

® Use local settings

® Enable All

® Disable All

For Assertion blocks that are not disabled, the generated code for a model

includes one of the following statements, at appropriate locations, depending
on the block’s input signal type (Boolean, real, or integer, respectively).

utAssert (input_signal);
utAssert(input_signal != 0.0);
utAssert(input_signal != 0);

By default, utAssert is a no-op in generated code. For assertions to abort
execution, you must enable them by including a parameter in the make_rtw
command. Specify the Make command field on the Real-Time Workshop
pane as follows:

make_rtw OPTS='-DDOASSERTS'

If you want triggered assertions not to abort execution and instead to print
the assertion statement, use the following make rtw variant:

make_rtw OPTS='-DDOASSERTS -DPRINT_ASSERTS'

utAssert is defined as

f#define utAssert(exp) assert(exp)

You can provide your own definition of utAssert in a hand-coded header
file if you want to customize assertion behavior in generated code. See
matlabroot/rtw/c/libsrc/rtlibsrc.h for implementation details.

Finally, when running a model in accelerator mode, Simulink calls back to
itself to execute assertion blocks instead of using generated code. Thus,
user-defined callbacks are still called when assertions fail.

For a full description of the Diagnostics pane, see “Diagnostics Pane” in
the Simulink documentation.

Adjusting Simulation Configuration Parameters for Code Generation

Hardware Implementation Options

The Hardware Implementation pane lists options you can use to specify
the constraints of a target microprocessor, such as word size for C language
integer types and byte ordering. Real-Time Workshop generates several type
definitions based on these settings, as explained in the description of the
Number of bits options below.

The Hardware Implementation pane is shown below.

Hardware Implementation

—Embedded hardware [simulation and code generation)

Device type: I Unspecified [azsume 32-bit Generic) LI
Mumber of bits: char: IS— shart: I‘IB— int: |32—

long: |32— native word size: |32—
Byte ordering: I Unzpecified LI
Signed integer divizgion rounds to:l Undefined LI

¥ Shift right on & signed integer az arithmetic shift

—Ermulation hardware [code generation only]

¥ Mone

As the sections in preceding figure show, you can specify integer and
fixed-point numerical behavior for two devices simultaneously:

* Embedded Hardware (simulation and code generation) — The
deployment hardware device for the model and the code generated by
Real-Time Workshop. Specifying this information in Simulink allows it
to properly simulate the behavior the user can expect on the eventual
hardware device.

¢ Emulation Hardware (Code Generation Only) — The device on which
code generated by Real-Time Workshop currently runs. Rapid prototyping
can be done on hardware devices that do not match the final hardware
device characteristics. The code generation process uses the prototyping
hardware device characteristics in conjunction with the deployment
hardware device characteristics to generate code that behaves like it will
on the deployment device.

The latter uses the former’s specification by default.

2-45

2 Code Generation and the Build Process

You can set target microprocessor options to be the same or different for
simulation and code generation.

To set the options, do one of the following:

® Select a specific target microprocessor from the Device type menu.
Real-Time Workshop sets the hardware characteristics, such as the bit size
and byte ordering, for that microprocessor for you.

® Select Custom as the device type and specify the target microprocessor
characteristics directly.

The hardware characteristics that you can specify explicitly for a custom
target device include

e Number of bits — Text fields that specify the number of bits used to
represent types char, short, int, and long. The value you specify must
be consistent with the word sizes as defined in the compiler’s 1imits.h
header file.

Real-Time Workshop integer type names are defined in the file rtwtypes.h.
The following table lists the type names and maps them to corresponding
Simulink integer data types.

Real-Time Workshop Simulink Integer Type
Integer Type

boolean T boolean

int8_ T ints

uint8 T uint8

int16_ T int16

uint16_T uint16

int32 T int32

uint32_T uint32

Real-Time Workshop uses the following rules to determine which ANSI-C
type names from which to define its types:

2-46

Adjusting Simulation Configuration Parameters for Code Generation

= For Real-Time Workshop to use this option, you must specify a word
size of 8, 16, 32 or 64 bits.

= If there is no ANSI-C type with a matching word size available,
Real-Time Workshop uses a larger ANSI-C type for int8 T, uint8 T,
int16 T, and uint16_T, if a larger type is available.

= If there is no ANSI-C 32-bit type available, Real-Time Workshop does
not define int32_T and uint32_T. Processors that do not define an
ANSI-C 32-bit type are not supported.

¢ Byte ordering — Specifies whether the target hardware uses Big Endian
(most significant byte first) or Little Endian (least significant byte first)
byte ordering. If left as Unspecified, Real-Time Workshop generates code
to determine the endianness of the target; this is the least efficient option.

o Shift right on a signed integer as arithmetic shift — ANSI C leaves
the behavior of right shifts on negative integers as implementation
dependent. Use this control to specify how Real-Time Workshop
implements right shifts on signed integers in generated code.

The option is selected by default. If your C or C++ compiler handles right
shifts as arithmetic shifts, this is the preferred setting.

= When the option is selected, Real-Time Workshop generates simple
efficient code whenever the Simulink model performs arithmetic shifts
on signed integers.

= When the option is unselected, Real-Time Workshop generates fully
portable but less efficient code to implement right arithmetic shifts.

2-47

2 Code Generation and the Build Process

2-48

As you configure a target, keep the following in mind:

Code generation targets can have different word sizes and other hardware
characteristics from the MATLAB host. Furthermore, code can be
prototyped on hardware that is different from either the deployment target
or the MATLAB host. Real-Time Workshop takes these differences into
account when generating code.

Real-Time Workshop generates code that gives bit-true agreement

with Simulink’s behavior for integer and fixed-point operations. When
configured for a 16- or 32-bit target, Real-Time Workshop generates code
that correctly and efficiently implements integer and fixed-point operations.

Generally, bit-true agreement is not feasible if you use different targets for
simulation and code generation and the targets have different sizes for C
char, short, int, or long data types. Code that is correct and efficient for
one target, may be neither correct nor efficient on a target with different
integer sizes. A fundamental reason for this has to do with the effects of C
promotion rules. For fixed-point usage, preprocessor checks intentionally
error out to prevent porting errors.

To ensure correctness and efficiency when you change targets at any
point during application development, you must reconfigure the hardware
implementation parameters for the new target before generating or
regenerating code.

When models contain Model blocks, all models that they reference must be
configured to use identical hardware settings to generate code.

For more information on the Hardware Implementation pane, run the
rtwdemo_targetsettings demo.

Model Referencing Options

Simulink allows you to include models in other models as blocks, a feature
called model referencing. The Model Referencing pane allows you to specify
options for including other models in this model and this model in other
models, and for building simulation and code generation targets.

Adjusting Simulation Configuration Parameters for Code Generation

Model Referencing

—Rebuild options for all referenced model

Fiebuild options: I If any changes detected LI

—Options for referencing this model

Total number of instances allowed per top model: I Multiple LI

Model dependencies:

% Specify the model dependencies as a cell anay of file names. The dependencies
% automatically include the model. mdl and linked library .mdl files. For files

*% not on the MATLAB path, uze abzolute paths; prefis $MDL to a file path if the

% path is relative to the location of the .mdl file; wildcards are allowed; use a %'

*% to comment out a line; use .." to continue lines. For example,

% {'D:\workhparameters. mat', '$MDL\mdlvars. mat', ..
% 'D:\wiorkhmasksh" m'}

o

[~ Pass scalar root inputs by value

[~ Minimize algebraic loop occurences

Model Referencing Pane

For information on the Minimize algebraic loop occurrences option, see
the discussion of “Algebraic Loops” on page 2-54. For more information on the
Model Referencing pane options, see “Referencing Models” in the Simulink
documentation.

Simulink and Real-Time Workshop Interactions to
Consider

The Simulink engine propagates data from one block to the next along signal
lines. The data propagated consists of

e Data type
¢ Line widths

® Sample times

2-49

2 Code Generation and the Build Process

2-50

The first stage of code generation is compilation of the block diagram. This
stage is analogous to that of a C or C++ program. The compiler carries out type
checking and preprocessing. Similarly, Simulink verifies that input/output
data types of block ports are consistent, line widths between blocks are of the
correct thickness, and the sample times of connecting blocks are consistent.

You can verify what data types any given Simulink block supports by typing

showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command
above.

The Simulink engine typically derives signal attributes from a source block.

For example, the Inport block’s parameters dialog box specifies the signal
attributes for the block.

Z1Block Parameters: Inl 2=l
Inpart

Provide an input port for a subspstem or model. For Triggered Subsystems, if 'Latch
[buffer) input' is selected, then the Inport block produces the value of the input at the

previous time step. The other parameters can be used to explicitly specify the input
zignal attributes.

tdain | Signal specification
[~ Specify properties via bus object

Bus object for validating input bus:
IBusD biect

I~ Output as stucture

Part dimenzsions [-1 for inherited]:
|2

Sample time [-1 for inherited]:
Joo

[rata type: I double

5

Signal type: | complex LI
Sampling mode: | auto LI
ok | canea | ey |

In this example, the Inport block has a port width of 3, a sample time of .01
seconds, the data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the
Inport block through a simple block diagram.

Adjusting Simulation Configuration Parameters for Code Generation

[}double c) (3) : “;. double ()03) [}
In1 Cut

Gain

In this example, the Gain and Outport blocks inherit the attributes specified
for the Inport block.

Additional integration details are provided on the following topics:

e “Sample Time Propagation” on page 2-51

® “Latches for Subsystem Blocks” on page 2-53
¢ “Block Execution Order” on page 2-53

® “Algebraic Loops” on page 2-54

Sample Time Propagation

Inherited sample times in source blocks (for example, a root inport) can
sometimes lead to unexpected and unintended sample time assignments.
Since a block may specify an inherited sample time, information available at
the outset is often insufficient to compile a block diagram completely. In such
cases, the Simulink engine propagates the known or assigned sample times
to those blocks that have inherited sample times but that have not yet been
assigned a sample time. Thus, Simulink continues to fill in the blanks (the
unknown sample times) until sample times have been assigned to as many
blocks as possible. Blocks that still do not have a sample time are assigned a
default sample time according to the following rules:

1 If the current system has at least one rate in it, the block is assigned the
fastest rate.

2 If no rate exists and the model is configured for a variable-step solver, the
block is assigned a continuous sample time (but fixed in minor time steps).
Real-Time Workshop (with the exception of the rapid simulation and
S-function targets) does not currently support variable-step solvers.

2-51

2 Code Generation and the Build Process

2-52

3 If no rate exists and the model is configured for a fixed-step solver, the
block is assigned a discrete sample time of (T, - T,)/50, where T, is the
simulation start time and T, is the simulation stop time. If T, is infinity,
the default sample time is set to 0.2.

To ensure a completely deterministic model (one where no sample times are
set using the above rules), you should explicitly specify the sample times of all
your source blocks. Source blocks include root inport blocks and any blocks
without input ports. You do not have to set subsystem input port sample
times. You might want to do so, however, when creating modular systems.

An unconnected input implicitly connects to ground. For ground blocks and
ground connections, the default sample time is derived from destination
blocks or the default rule.

In1 l: Ot

Gain

All blocks have an inherited sample time (T, = -1). They are all assigned
a sample time of (T, - T,)/50.

Constant Block Sample Times. You can specify a sample time for Constant
blocks. This has certain implications for code generation.

When a sample time of inf is selected for a Constant block,

¢ [fInline parameters is on, the block takes on a constant sample time,
and propagates a constant sample time downstream.

¢ [f Inline parameters is off, the Constant block inherits its sample
time—which is nonconstant—and propagates that sample time
downstream.

Generated code for any block differs when it has a constant sample time; its
outputs are represented in the constant block outputs structure instead of in
the general block outputs structure. The generated code thus reflects that the

Adjusting Simulation Configuration Parameters for Code Generation

Constant block propagates a constant sample time downstream if a sample
time of inf is specified and Inline parameters is on.

Latches for Subsystem Blocks

When an Inport block is the signal source for a triggered or function-call
subsystem, you can use latch options to preserve input values while the
subsystem executes. The Inport block latch options include:

For... You Can Use...

Triggered Latch input by delaying outside signal
subsystems

Function-call Latch input by copying inside signal
subsystems

When you use Latch input by copying inside signal for a function-call
subsystem, Real-Time Workshop

® Preserves latches in generated code regardless of any optimizations that
might be set

e Places the code for latches at the start of a subsystem’s output/update
function

For more information on these options, see the description of the Inport block
in the Simulink documentation.

Block Execution Order

Once Simulink compiles the block diagram, it creates a model.rtw file
(analogous to an object file generated from a C or C++ file). The model.rtw
file contains all the connection information of the model, as well as the
necessary signal attributes. Thus, the timing engine in Real-Time Workshop
can determine when blocks with different rates should be executed.

You cannot override this execution order by directly calling a block (in
hand-written code) in a model. For example, the disconnected trigger
model below has its trigger port connected to ground, which can lead to all
blocks inheriting a constant sample time. Calling the trigger function, f (),
directly from user code does not work correctly and should never be done.

2-53

2 Code Generation and the Build Process

2-54

Instead, you should use a function-call generator to properly specify the
rate at which f () should be executed, as shown in the connected_trigger
model below.

Connected

s -
1 Disconnected Function-call Trgger

:Trigger Generator

¥ ¥
) e
In1 Cutl In Cutt
Triggerad Triggerad
Subsystem Subsystem

Instead of the function-call generator, you could use any other block that can
drive the trigger port. Then, you should call the model’s main entry point to
execute the trigger function.

For multirate models, a common use of Real-Time Workshop is to build
individual models separately and then hand-code the I/O between the models.
This approach places the burden of data consistency between models on the
developer of the models. Another approach is to let Simulink and Real-Time
Workshop ensure data consistency between rates and generate multirate code
for use in a multitasking environment. The Simulink Rate Transition block is
able to interface both periodic and asynchronous signals. For a description of
the Real-Time Workshop libraries, see Chapter 16, “Asynchronous Support”.
For more information on multirate code generation, see Chapter 8, “Models
with Multiple Sample Rates”.

Algebraic Loops

Algebraic loops are circular dependencies between variables. This prevents
the straightforward direct computation of their values. For example, in the
case of a system of equations

Adjusting Simulation Configuration Parameters for Code Generation

[] y = -X
the values of x and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for x and y (in an
intelligent manner, for example, using gradient based search) or “solve” the
system of equations. In the previous example, solving the system into an
explicit form leads to

® 2x = 2
ey = -x
® x =1
ey = -1

An algebraic loop exists whenever the output of a block having direct
feedthrough (such as Gain, Sum, Product, and Transfer Fcn) is fed back as an
input to the same block. Simulink is often able to solve models that contain
algebraic loops, such as the diagram shown below.

I
¥

Sine Mfawe

Outl

3

i‘!ﬂf
" I
c
3

Constant

Real-Time Workshop does not produce code that solves algebraic loops. This
restriction includes models that use Algebraic Constraint blocks in feedback
paths. However, Simulink can often eliminate all or some algebraic loops that
arise, by grouping equations in certain ways in models that contain them. It
does this by separating the update and output functions to avoid circular
dependencies. See “Algebraic Loops” in the Simulink documentation for
details.

2-55

2 Code Generation and the Build Process

2-56

Algebraic Loops in Triggered Subsystems. While Simulink can
minimize algebraic loops involving atomic and enabled subsystems, a special
consideration applies to some triggered subsystems. An example for which
code can be generated is shown in the model and triggered subsystem below.

+HH HH
i [
H HH .
Ll
Fulse o
Generator wop
¥
E3
1 In1 Out1 = 1)
Cordiant Outl
onstan Triggered
Subsystem

The default behavior of Simulink is to combine output and update methods
for the subsystem, which creates an apparent algebraic loop, even though the
Unit Delay block in the subsystem has no direct feedthrough.

You can allow Simulink to solve the problem by splitting the output and
update methods of triggered and enabled-triggered subsystems when
necessary and feasible. If you want Real-Time Workshop to take advantage of
this feature, select the Minimize algebraic loop occurrences check box in
the Subsystem parameters dialog box. Select this option to avoid algebraic
loop warnings in triggered subsystems involved in loops.

Note If you always check this box, the generated code for the subsystem
might contain split output and update methods, even if the subsystem is not
actually involved in a loop. Also, if a direct feedthrough block (such as a Gain
block) is connected to the inport in the above triggered subsystem, Simulink
cannot solve the problem, and Real-Time Workshop is unable to generate code.

A similar Minimize algebraic loop occurrences option appears on
the Model Referencing pane of the Configuration Parameters dialog
box. Selecting it enables Real-Time Workshop to generate code for models
containing Model blocks that are involved in algebraic loops.

Configuring Real-Time Workshop Code Generation Parameters

Configuring Real-Time Workshop Code Generation
Parameters

As discussed in “Adjusting Simulation Configuration Parameters for Code
Generation” on page 2-23, many model configuration parameters affect the
way that Real-Time Workshop generates code and builds an executable from
your model.

However, you initiate and directly control the code generation and build
process from the Real-Time Workshop pane and related tabs (also presented
as subnodes).

In addition to using the Configuration Parameters dialog box, you can

use get_param and set_param to individually access most configuration
parameters. The configuration parameters you can get and set are listed in
“Configuration Parameter Reference” in the Real-Time Workshop Reference.

The following topics discuss:

® “Real-Time Workshop Pane” on page 2-57
* “Comments Options” on page 2-64

* “Symbols Options” on page 2-65

® “Custom Code Options” on page 2-68

® “Debug Options” on page 2-70

® “Interface Options” on page 2-72

Real-Time Workshop Pane

The following topics discuss:

® “Opening the Real-Time Workshop Pane” on page 2-58

e “Real-Time Workshop Subpanes” on page 2-59

® “Getting Context-Sensitive Help with Tooltips” on page 2-60
* “Browse Button” on page 2-60

® “System Target File” on page 2-60

2-57

2 Code Generation and the Build Process

2-58

“Language” on page 2-60

“Generate HTML Report” on page 2-61
“TLC Options” on page 2-61

“Generate Makefile” on page 2-62
“Make Command” on page 2-62
“Template Makefile” on page 2-63
“Generate Code Only” on page 2-63
“Build Button” on page 2-63

Opening the Real-Time Workshop Pane

There are three ways to open the Real-Time Workshop pane of the
Configuration Parameters dialog box:

From the Simulation menu, choose Configuration Parameters (or type
Ctrl+E). When the Configuration Parameters dialog box opens, click
Real-Time Workshop in the Select (left) pane.

Select Model Explorer from the View menu in the model window, or
type daexplr on the MATLAB command line and press Enter. In Model
Explorer, expand the node for the current model in the left pane and click
Configuration (active). The configuration dialog elements are listed in
the middle pane. Clicking any of these brings up that dialog in the right
pane. Alternatively, right-clicking the Real-Time Workshop configuration
element in the middle pane and choosing Properties from the context
menu activates that dialog in a separate window.

Select Options from the Real-Time Workshop submenu of the Tools
menu in the model window.

The general Real-Time Workshop pane, as it appears in the Model Explorer,
is shown below.

Configuring Real-Time Workshop Code Generation Parameters

Real-Time Workshop

General IEomments | Sembols | Custom Code | Debug | Interface |

—Target selection

System target file: Igrt.tlc Browse... |
Language: I C LI
Description:

—Diocumentation

[~ Generate HTHML report

I~ Launch repart autamatically

—Build proc:

TLLC options: I
Makefile configuration

¥ Generate makefile

Make command: Imake_rtw

Template makefile: Igrt_default_tmf

[~ Generate code anly Build |

Real-Time Workshop Pane

This pane allows you to specify most of the options for controlling the
Real-Time Workshop code generation and build process. The content of the
pane and its subpanes can change depending on the target you specify. Thus,
a model that has multiple configuration sets can invoke parameters in one
configuration that do not apply to another configuration. In addition, some
configuration options are available only with Real-Time Workshop Embedded
Coder.

Real-Time Workshop Subpanes

Additional Real-Time Workshop configuration parameters are grouped in
subpanes. Most of these subpanes are divided into two or three sections.

The lowest section, which is present on all subpanes, contains the Build (or
Generate code) button. For information on the contents of the subpanes, see
the following sections:

* “Comments Options” on page 2-64
* “Symbols Options” on page 2-65
® “Custom Code Options” on page 2-68

2-59

2 Code Generation and the Build Process

2-60

® “Debug Options” on page 2-70
® “Interface Options” on page 2-72

Getting Context-Sensitive Help with Tooltips

The general Real-Time Workshop pane and its subpanes provide tooltips.
Place your pointer over any button, text box, check box, or menu to display a
message box that briefly explains the option. The message disappears after a
few seconds. To see it again, move the pointer slightly.

Browse Button

The Browse button opens the System Target File Browser (See “Selecting
a System Target File” on page 2-3). The browser lets you select a preset
target configuration consisting of a system target file, template makefile,
and make command.

“Choosing and Configuring Your Target” on page 2-3 describes the use of the
browser and includes a complete list of available target configurations.

System Target File
The System target file field has these functions:

¢ Ifyou select a target configuration by using the System Target File Browser,
this field displays the name of the chosen system target file (target.tlc).

¢ Ifyou are using a target configuration that does not appear in the System
Target File Browser, enter the name of your system target file in this field.
Click Apply or OK to configure for that target.

Language

Use the Language menu in the Target selection section of the dialog pane
to select the target language for the code Real-Time Workshop generates.
You can select C or C++. Real-Time Workshop generates .c or .cpp files,
depending on your selection, and places the files in your build directory.

Configuring Real-Time Workshop Code Generation Parameters

Note If you select C++, you might need to configure Real-Time Workshop
to use the appropriate compiler before you build a system. For details, see
“Choosing and Configuring a Compiler” on page 2-19.

Generate HTML Report

If you select the Generate HTML report option, Real-Time Workshop
produces a code generation report in HTML format and automatically opens
it for viewing in the MATLAB Help browser (on a PC, a separate window
opens containing the report).

When you select the Generate HTML report check box, Real-Time
Workshop automatically selects the check box under it named Launch
report after code generation completes. When this second check
box is selected, Real-Time Workshop displays the report immediately
after it generates the code. If you do not want to see the report at that
time, clear this second check box. In either case, you can open the report
later. Real-Time Workshop places the report on the MATLAB path at
modname_targetconfigname rtw\html\modname codegen rpt.html. For
example, if the model for which you generate code is named fuelsys.mdl,
and you select grt as the target configuration, the HTML report is placed in
fuelsys grt rtw\html\fuelsys codegen_rpt.html.

For more detail on report content, see “Viewing Generated Code in Generated
HTML Reports” on page 2-122.

TLC Options

You can enter Target Language Compiler (TLC) command line options in the
TLC options edit field, for example

e -aVarName=1 to declare a TLC variable and/or assign a value to it

e -IC:\Work to specify an include path

® -v to obtain verbose output from TLC processing (for example, when
debugging)

2-61

2 Code Generation and the Build Process

2-62

Specifying TLC options does not add any flags to the Make command field,
as do some of the targets available in the System Target File Browser.

For additional information, see “Setting Target Language Compiler
Options” on page 2-79 for details, as well as the Target Language Compiler
documentation.

Generate Makefile

The Generate makefile option specifies whether Real-Time Workshop is

to generate a makefile for a model during the build process. By default,
Real-Time Workshop generates a makefile. You can suppress the generation of
a makefile, for example in support of custom build processing that is not based
on makefiles, by clearing Generate makefile . When you clear this option,

¢ The Make command and Template makefile options are unavailable.

* You must set up any post code generation build processing, using a
user-defined command, as explained in “Customizing Post Code Generation
Build Processing” on page 2-116.

Make Command

A high-level M-file command, invoked when a build is initiated, controls the
Real-Time Workshop build process. Each target has an associated make
command. The Make command field displays this command.

Almost all targets use the default command, make rtw. Targets Available
from the System Target File Browser on page 2-6 lists the make command
associated with each target.

Third-party targets might supply another make command. See the vendor’s
documentation.

In addition to the name of the make command, you can supply arguments
in the Make command field. These arguments include compiler-specific
options, include paths, and other parameters. When the build process invokes
the make utility, these arguments are passed along in the make command line.

“Template Makefiles and Make Options” on page 2-10 lists the Make
command arguments you can use with each supported compiler.

Configuring Real-Time Workshop Code Generation Parameters

Template Makefile
The Template makefile field has these functions:

¢ If you have selected a target configuration using the System Target
File Browser, this field displays the name of an M-file that selects an
appropriate template makefile for your development environment. For
example, in “Real-Time Workshop Pane” on page 2-57, the Template
makefile field displays grt_default tmf, indicating that the build process
invokes grt_default tmf.m.

“Template Makefiles and Make Options” on page 2-10 gives a detailed
description of the logic by which Real-Time Workshop selects a template
makefile.

e Alternatively, you can explicitly enter the name of a specific template
makefile (including the extension) in this field. You must do this if you are
using a target configuration that does not appear in the System Target File
Browser. This is necessary if you have written your own template makefile
for a custom target environment.

If you specify your own template makefile, be careful to include the filename
extension. If a filename extension is not included in the Template makefile
field, Real-Time Workshop attempts to find and execute a file with the
extension .m (that is, an M-file).

Generate Code Only

When you select this option, the build process generates code but does not
invoke the make command. The code is not compiled and an executable is
not built.

When you select this option, the caption of the Build button changes to
Generate code.

Build Button

The Build button provides one way of initiating the build process for a model
or subsystem. For this button to be visible, the Generate code only option
must be cleared.

2-63

2 Code Generation and the Build Process

2-64

For a complete list of ways to initiate a build, see “Initiating the Build
Process” on page 2-81.

Comments Options

The figure below shows the Comments pane, which controls whether and
how comments are generated into code.

Real-Time Workshop

General | ISymboIs | Custom Code | Debug | Interface |

—Dwerall control

¥ Include comments

—&uto generated comment
¥ Simulink block comments
¥ Show eliminated statements

[~ Werbose comments for SimulinkGlobal storage class

Comments Pane

Note Comments can include international (non-US-ASCII) characters
encountered during code generation when found in Simulink block names and
block descriptions, user comments on Stateflow diagrams, Stateflow object
descriptions, custom TLC files, and code generation template files.

Include Comments

This check box determines whether any comments are placed in the generated
files. Selecting this check box allows you to select one or more of the comment
types indicated in the Auto-generated comments pane to be placed in the
generated code. If you clear this check box, the comments do not appear in the
generated files.

Simulink Block Comments

When selected, this check box allows the automatically generated comments
that describe a block’s code to precede that code in the generated file.

Configuring Real-Time Workshop Code Generation Parameters

Show Eliminated Statements

If this option is selected, statements that were eliminated as the result
of optimizations (such as parameter inlining) appear as comments in the
generated code. The default is not to include eliminated statements.

Verbose Comments for SimulinkGlobal Storage Class

This check box controls the generation of comments in the model parameter
structure declaration in model prm.h. Parameter comments indicate
parameter variable names and the names of source blocks. When this check
box is cleared (the default), parameter comments are generated if less than
1000 parameters are declared. This reduces the size of the generated file for
models with a large number of parameters. When this check box is selected,
parameter comments are generated regardless of the number of parameters.

Symbols Options

The figure below shows the Symbols pane, which you use to control how
identifiers and objects are named.

Real-Time Workshop

General | Comments | IEustom Code | Debug | Interface

Auto-generated identifier naming rul
’V M aximum identifier length: |31

Symbols Pane

The only symbols option available for GRT targets is Maximum identifier
length. See “Maximum Identifier Length” on page 2-65 for a description.

When Real-Time Workshop Embedded Coder is installed on your system, the
Symbols pane expands to include options for controlling identifier formats,
mangle length, scalar inlined parameters, and Simulink data object naming
rules. For details, see “Symbols Pane” in the Real-Time Workshop Embedded
Coder documentation.

Maximum Identifier Length

This is the only symbols option for GRT targets. The Maximum identifier
length field allows you to limit the number of characters in function, type

2-65

2 Code Generation and the Build Process

2-66

definition, and variable names. The default is 31 characters. This is also the
minimum length you can specify; the maximum is 256 characters. Consider
increasing identifier length for models having a deep hierarchical structure,
and when exercising some of the mnemonic identifier options described below.

Within a model containing Model blocks, no collisions of constituent model
names can exist. When generating code from a model that uses model
referencing, the Maximum identifier length must be large enough to
accommodate the root model name and the name mangling string (if any). A
code generation error occurs if Maximum identifier length is too small.

When a name conflict occurs between a symbol within the scope of a higher
level model and a symbol within the scope of a referenced model, the symbol
from the referenced model is preserved. Name mangling is performed on the
symbol from the higher level model.

Auto-Generated Identifier Naming Rules Subpane

If you have a Real-Time Workshop Embedded Coder license and you are
configuring a model for an ERT target, the following additional options appear:

¢ Identifier format control: Provides parameter fields that let you
customize generated identifiers. You can enter macro strings that specify
whether, and in what order, certain substrings are included within
generated identifiers. The Identifier format control parameters affect
the generation of identifiers for

= Global variables

= Global types

= Field name of global types

= Subsystem methods

= Local temporary variables

= Local block output variables
= Constant macros

For details on how to specify formats, see “Specifying Identifier Formats” in
the Real-Time Workshop Embedded Coder Documentation.

Configuring Real-Time Workshop Code Generation Parameters

¢ Minimum mangle length: See “Name Mangling” in the Real-Time
Workshop Embedded Coder documentation.

® Maximum identifier length: Specifies the maximum number of
characters (default 31) in generated function, typedef, and variable names.
If you expect your model to generate lengthy identifiers (due to use of long
signal or parameter names, for example), or you find that identifiers are
being mangled more than expected, you should increase the Maximum
identifier length.

Note that the Maximum identifier length interacts with the Identifier
format control specifications, as described below.

* Generate scalar inlined parameters as: This option takes effect when
the Inline parameters option is selected. For scalar inlined parameters,
this menu lets you control how parameter values are expressed in the
generated code. You can specify one of the following:

= Literals: Parameters are expressed as numeric constants. This is the
default, and is backward compatible with prior versions of Real-Time
Workshop that did not support this option. Use of Literals can help
in debugging TLC code, as it makes the values of parameters easy to
search for.

= Macros: Parameters are expressed as variables (with #define macros).
The Macros option can make code more readable.

Simulink Data Object Naming Rules Subpane

If you have a Real-Time Workshop Embedded Coder license and you are
configuring a model for an ERT target, the following additional options appear:

® Signal naming: Use this option to define rules that change the names
of a model’s signals.

¢ Parameter naming: Use this option to define rules that change the
names of all of a model’s parameters.

¢ #define naming: Use this option to define rules that change the names of
a model’s parameters that have a storage class of Define.

For more information on these options, see the Module Packaging Features
document.

2-67

2 Code Generation and the Build Process

Custom Code Options

The figure below shows the Custom Code pane, which you can use to include
your own headers, files, and functions in generated code.

Real-Time Workshop

General | Comments | Symbaols | IDebug | Interface |

—Include custom c-code in generated:

Source file Source file:
Header file
Initialize: function
Terminate function

hlude list of additional:

Include directories Include directories:
Source files
Libraries

Custom Code Pane

Use the Custom Code pane to insert code fragments into the generated files
and to include additional files and paths in the build process. The sections
and subsections on this pane are
® Custom C code inserted into the specified file or function

= Source file

Code is placed near the top of the generated model.c or model.cpp file,
outside of any function.

= Header file
Code is placed near the top of the generated model . h file.
= Initialize function

Code is placed inside the model’s initialize function in the model.c or
model . cpp file.

2-68

Configuring Real-Time Workshop Code Generation Parameters

= Terminate function

Code is placed inside the model’s terminate function in the model.c
or model.cpp file. You should also select the Terminate function
required check box on the Real-Time Workshop > Interface pane.

¢ Additional files and paths to be added into the build process
= Include directories

List of additional include directories where header files can be found.
Specify absolute or relative paths to the directories. If you specify
relative paths, the paths must be relative to the directory containing
your model files, not relative to the build directory. The order in which
you specify the directories is the order in which they are searched for
source and include files.

= Source files

List of additional source files to be compiled and linked. The files can be
specified with an absolute path, although just the filename is sufficient
if the file is in the current MATLAB directory or in one of the Include
directories.

For each additional source that you specify, Real-Time Workshop
expands a generic rule in the template makefile for the directory in
which the source file is found. For example, if a source file is found in
directory inc, Real-Time Workshop adds a rule similar to the following:

%.0bj: buildir\inc\%.c
$(CC) -c -Fo$(@F) $(CFLAGS) $<
Real-Time Workshop adds the rules in the order you list the source files.
= Libraries

List of additional libraries to be linked with. The libraries can be
specified with a full path or just a filename when located in the current
MATLAB directory or is listed as one of the Include directories.

Note Custom code that you include in a configuration set is ignored
when building Simulink Accelerator, S-function, and model reference
simulation targets.

2-69

2 Code Generation and the Build Process

Debug Options
The Debug subpane controls options to help in troubleshooting generated
code. It contains two sections:

® Build process — The model compilation phase

¢ TLC process — The target language code generation phase

The debug options are of interest to those who are writing TLC code when
customizing targets, integrating legacy code, or developing new blocks.

These options are summarized here. See the Target Language Compiler
documentation for details. The figure below shows the Debug pane.

Real-Time Workshop

General | Comments | Symbaols Ilnterface

—Build proc:
¥ “erbose build
[~ Retain itw file

—TLL proc
[~ Profile TLC
[~ Start TLC debugger when generating code

[~ Start TLC coverage when generating code
[~ Enable TLC assertion

Debug Pane

Verbose Build
If this option is selected, the MATLAB Command Window displays progress
information during code generation. Compiler output also is made visible.

Retain .rtw File

Normally, the build process deletes the model . rtw file from the build directory
at the end of the build. When Retain .rtw file is selected, model . rtw is not
deleted. This option is useful if you are modifying the target files, in which
case you need to look at the model.rtw file.

2-70

Configuring Real-Time Workshop Code Generation Parameters

Profile TLC

When this option is selected, the TLC profiler analyzes the performance of
TLC code executed during code generation, and generates a report. The report
is in HTML format and can be read in your Web browser.

Start TLC Debugger When Generating Code

This option starts the TLC debugger during code generation. You can also
invoke the TLC debugger by entering the -dc argument into the System
Target File field on the Real-Time Workshop pane.

To invoke the debugger and run a debugger script, enter -df filename into
the System Target File field on the Real-Time Workshop pane.

Start TLC Coverage When Generating Code

When this option is selected, the Target Language Compiler generates a
report containing statistics indicating how many times Real-Time Workshop
reads each line of TLC code during code generation.

This option is equivalent to entering the -dg argument into the System
Target File field on the Real-Time Workshop pane.

Enable TLC Assertion

When this box is selected, Real-Time Workshop halts building if any

user-supplied TLC file contains an %assert directive that evaluates to FALSE.
The box is not selected by default, meaning that TLC assertion code is ignored.
You can also use these MATLAB commands to control TLC assertion handling.

To set the flag on or off, use the set _param command. The default is off.

set _param(model, 'TLCAssertion', 'on|off')

To check the current setting, use get param.

get param(model, 'TLCAssertion')

2-71

2 Code Generation and the Build Process

Interface Options

The figure below shows the Interface pane, which gives you control over
which math library is used at run time, whether to include one of three APIs
in generated code, and certain other options.

Real-Time Workshop

General | Comments | Symbaols | Custom Code | Debug |

—Software environment

Target floating-point math environment:l AMSI-C LI

Litility function generation I Auta LI
—Werification

MAT-file wariable name modifier:l T LI

—Data exchang

Interface: I MHone LI

Interface Pane

When Real-Time Workshop Embedded Coder is installed on your system, the
Interface pane expands to include several additional options. For details,
see “Interface Options” on page 2-72 in the Real-Time Workshop Embedded
Coder documentation.

For a summary of option dependencies, see “Interface Option Dependencies”
on page 2-74. For details on using the external mode interface, see Chapter 6,
“External Mode”. For information on using C-API and ASAP2 interfaces see
Chapter 17, “Data Exchange APIs”.

Target Floating-Point Math Environment

Target configurations can expressly specify the floating-point math library to
use when generating code. Real-Time Workshop uses a switchyard called the
Target Function Library (TFL) to designate compiler-specific versions of math
functions. The mappings created in the TFL allow for C or C++ run-time
library support specific to a compiler.

2-72

Configuring Real-Time Workshop Code Generation Parameters

Note Before setting this option, verify that your compiler supports the
library you want to use. If you select an option that your compiler does not
support, compiler errors can occur.

Real-Time Workshop provides three different TFLs:

e ansi_tfl tmw.mat—ANSI C library (default)
e iso_tfl tmw.mat—Extensions for ISO-C/C99
e gnu_tfl tmw.mat—Extensions for GNU

You choose among them by setting the Target floating-point math
environment in the Software Environment section of the Real-Time
Workshop > Interface pane. This enables you to specify different run-time
libraries for different configuration sets within a given model.

Selecting ANSI - C provides the ANSI C set of library functions. For example,
selecting ANSI -C would result in generated code that calls sin() whether the
input argument is double precision or single precision. However, if you select
I1S0-C, the call instead is to the function sinf (), which is single precision.

If your compiler supports the ISO C math extensions, selecting the ISO C
library can result in more efficient code.

Utility Function Generation

Use this drop-down menu to direct where Real-Time Workshop should place
fixed-point and other utility code. The choices are Auto and Shared location.
The shared location directs code for utilities to be placed within the slprj
directory in your working directory, which is used for building model reference
targets. The Auto option operates as follows:

® When the model contains Model blocks, place utilities within the
slprj/target/_sharedutils directory.

® When the model does not contain Model blocks, place utilities in the build
directory (generally, in model.c or model.cpp).

2-73

2 Code Generation and the Build Process

MAT-File Variable Name Modifier

This field allows you to select a string to be added to the variable names used
when logging data to MAT-files, to distinguish logging data from Real-Time
Workshop applications and Simulink. You can select a prefix (rt_), suffix
(_rt), or choose to have no modifier. Real-Time Workshop prefixes or appends
the string chosen to the variable names for system outputs, states, and
simulation time specified in the Data Import/Export pane.

See “Data Import and Export Options” on page 2-25 for information on
MAT-file data logging.

Interface
Use the Interface option to specify an API to be included in generated code:

® C-API
® External mode

® ASAP2

When you select C-API or External mode, other options appear. C-API and
External mode are mutually exclusive. However, this is not the case for
C-API and ASAP2. For more information on working with these interfaces,
see “C-API for Interfacing with Signals and Parameters” on page 17-2, and
Chapter 6, “External Mode”.

Interface Option Dependencies

Several options available on the Interface pane have dependencies on
settings of other options. The following dependency table summarizes these
option dependencies.

Option Dependencies? Dependency Details

Target floating-point math No

environment

Utility function generation Yes Required if using model reference
Support floating-point No

numbers (ERT targets only)

2-74

Configuring Real-Time Workshop Code Generation Parameters

Option Dependencies? Dependency Details

Support non-finite numbers Yes Enabled by Support floating-point
(ERT targets only) numbers

Support complex numbers No

(ERT targets only)

Support absolute time (ERT No
targets only)

Support continuous time (ERT No
targets only)

Support non-inlined Yes Requires that you enable Support

S-functions (ERT targets floating-point numbers and

only) Support non-finite numbers

GRT compatible call interface Yes Requires that you enable Support

(ERT targets only) floating-point numbers and disable
Single output/update function

Single output/update function Yes Disable for GRT compatible call

(ERT targets only) interface

Terminate function required Yes
(ERT targets only)

Generate reusable code (ERT Yes
targets only)

Reusable code error Yes Enabled by Generate reusable code
diagnostic (ERT targets only)
Pass root-level I/0 as (ERT Yes Enabled by Generate reusable code

targets only)

Create Simulink S-Function No
block (ERT targets only)

2-75

2 Code Generation and the Build Process

Option
MAT-file logging

MAT-file file variable name
modifier (ERT targets only)

Suppress error status in

real-time model data structure

(ERT targets only)
Interface

Signals in C API
Parameters in C API
Transport layer

MEX-file arguments
Static memory allocation

Static memory buffer size

Dependencies?
Yes

Yes

No

Yes
Yes
Yes
Yes
Yes
Yes

Dependency Details

For ERT targets, requires that you
enable Support floating-point
numbers, Support non-finite
numbers, and Terminate function
required

Enabled by MAT-file logging

Set Interface to C-API
Set Interface to C-API
Set Interface to External mode
Set Interface to External mode
Set Interface to External mode

Enable Static memory allocation

2-76

Configuring Generated Code with TLC

Configuring Generated Code with TLC

You can use the Target Language Compiler (TLC) to fine tune your generated
code. TLC supports extended code generation variables and options in
addition to those included in the code generation options categories of the
Real-Time Workshop pane.

There are two ways to set TLC variables and options:

® “Assigning Target Language Compiler Variables” on page 2-77
® “Setting Target Language Compiler Options” on page 2-79

Note You should not customize TLC files in the directory
matlabroot/rtw/c/tlceven though the capability exists to do so. Such TLC
customizations might not be applied during the code generation process and
can lead to unpredictable results.

Assigning Target Language Compiler Variables
The %assign statement lets you assign a value to a TLC variable, as in

%sassign MaxStackSize = 4096
This is also known as creating a parameter name/ parameter value pair.
For a description of the %assign statement see the Target Language Compiler
documentation. You should write your %assign statements in the Configure

RTW code generation settings section of the system target file.

The following table lists the code generation variables you can set with the
%sassign statement.

2-77

2 Code Generation and the Build Process

Target Language Compiler Optional Variables

Variable

Description

MaxStackSize=N

When the Local block outputs check box is selected,
the total allocation size of local variables that are
declared by all block outputs in the model cannot exceed
MaxStackSize (in bytes). MaxStackSize can be any
positive integer. If the total size of local block output
variables exceeds this maximum, the remaining block
output variables are allocated in global, rather than local,
memory. The default value for MaxStackSize is rtInf,
that is, unlimited stack size.

Note: Local variables in the generated code from sources
other than local block outputs and stack usage from
sources such as function calls and context switching

are not included in the MaxStackSize calculation. For
overall executable stack usage metrics, do a target-specific
measurement by using run-time (empirical) analysis or
static (code path) analysis with object code.

MaxStackVariableSize=N

When the Local block outputs check box is selected,
this limits the size of any local block output variable
declared in the code to N bytes, where N>0. A variable
whose size exceeds MaxStackVariableSize is allocated in
global, rather than local, memory. The default is 4096.

WarnNonSaturatedBlocks=value

Flag to control display of overflow warnings for blocks
that have saturation capability, but have it turned off
(unchecked) in their dialog. These are the options:

® 0 — No warning is displayed.

* 1 — Displays one warning for the model during code
generation

e 2 — Displays one warning that contains a list of all
offending blocks

For more information, see the Target Language Compiler documentation.

2-78

Configuring Generated Code with TLC

Setting Target Language Compiler Options

You can enter TLC options directly into the System target file field in the
Real-Time Workshop general pane of the Configuration Parameters dialog
box, by appending the options and arguments to the system target filename.
This is equivalent to invoking the Target Language Compiler with options
on the MATLAB command line. The most common options are shown in the

table below.

Target Language Compiler Options

Option

Description

-Ipath

Adds path to the list of paths in which to search for
target files (.tlc files).

-m[N|a]

Maximum number of errors to report when an error
is encountered (default is 5). For example, -m3
specifies that at most three errors will be reported.
To report all errors, specify -ma.

-d[g|n|o]

Specifies debug mode (generate, normal, or off).
Default is off. When -dg is specified, a . log file is
create for each of your TLC files. When debug mode
is enabled (that is, generate or normal), the Target
Language Compiler displays the number of times
each line in a target file is encountered.

-aRTWCAPI

-aRTWCAPI=1 to generate API for both signals and
parameters

-aRTWCAPISignals

-aRTWCAPISignals=1 to generate API for signals
only

-aRTWCAPIParams

-aRTWCAPIParams=1 to generate API for parameters
only

-aVariable=val

Equivalent to the TLC statement
%assign Variable = val

Note: It is best to use %assign statements in the
TLC files, rather than the -a option.

2-79

2 Code Generation and the Build Process

You can speed your TLC development cycle by not rebuilding code when your
TLC files have changed, but your model has not. See “Retain .rtw File” on
page 2-70 for information on how to do this.

For more information on TLC options, see the Target Language Compiler
documentation.

2-80

Inferacting with the Build Process

Interacting with the Build Process

Real-Time Workshop generates code into a set of source files that vary little
among different targets. Not all possible files are generated for every model.
Some files are created only when the model includes subsystems, calls
external interfaces, or uses particular types of data.

Real-Time Workshop handles most of the code formatting decisions (such as
identifier construction and code packaging) in consistent ways.

The following topics discuss:

® “Initiating the Build Process” on page 2-81

® “Construction of Symbols” on page 2-82

® “Generated Source Files and File Dependencies” on page 2-84
* “Reloading Code from the Model Explorer” on page 2-104

e “Rebuilding Generated Code” on page 2-105

® “Profiling Generated Code” on page 2-105

Initiating the Build Process

You can initiate code generation and the build process by using the following
options:

® (Clear the Generate code only option on the Real-Time Workshop pane
of the Configuration Parameters dialog box and click Build.

® Press Ctrl+B.

® Select Tools > Real-Time Workshop > Build Model.

¢ Invoke the rtwbuild command from the MATLAB command line, using
one of the following syntax options:

rtwbuild src
rtwbuild('src')

For src, specify the name of a model or subsystem. The command initiates
the build process with the current model configuration settings and creates

2-81

2 Code Generation and the Build Process

an executable. If the model or subsystem is not loaded into Simulink,
rtwbuild loads it before initiating the build process.

For more information on using subsystems, see Chapter 4, “Building
Subsystems and Working with Referenced Models”.

® Invoke the slbuild command from the MATLAB command line, using
one of the following syntax options:

slbuild model

slbuild model 'buildtype'
slbuild('model"')
slbuild('model' 'buildtype')

For model, specify the name of a model for which you want to build a
stand-alone Real-Time Workshop target executable or a model reference
target. The buildtype can be one of the following:

= ModelReferenceSimTarget builds a model reference simulation target

= ModelReferenceRTWTarget builds a model reference simulation and
Real-Time Workshop targets

= ModelReferenceRTWTargetOnly builds a model reference Real-Time
Workshop target

The command initiates the build process with the current model
configuration settings. If the model is not loaded into Simulink, slbuild
loads it before initiating the build process.

For more information on model referencing, see “Generating Code from
Models Containing Model Blocks” on page 4-19.

Construction of Symbols
For GRT, GRT-malloc and RSim targets, Real-Time Workshop automatically

constructs identifiers for variables and functions in the generated code. These
symbols identify

® Signals and parameters that have Auto storage class

® Subsystem function names that are not user defined

e All Stateflow names

2-82

Inferacting with the Build Process

The components of a generated symbol include

® The root model name, followed by

* The name of the generating object (signal, parameter, state, and so on),
followed by

® A unique name mangling string

The name mangling string is conditionally generated only when necessary to
resolve potential conflicts with other generated symbols.

The length of generated symbols is limited by the Maximum identifier
length parameter specified on the Symbols pane of the Configuration
Parameters dialog box. When there is a potential name collision between two
symbols, a name mangling string is generated. The string has the minimum
number of characters required to avoid the collision. The other symbol
components are then inserted. If Maximum identifier length is not large
enough to accommodate full expansions of the other components, they are
truncated. To avoid this outcome, it is good practice to

® Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.

® Where possible, increase the Maximum identifier length parameter to
accommodate the length of the symbols you expect to generate.

Maximum identifier length must be the same for both top and referenced
models. Model referencing can involve additional naming constraints. For
information, see “Symbols Options” on page 2-65 and “Parameterizing
Referenced Models” on page 4-22.

Users of Real-Time Workshop Embedded Coder have additional flexibility
over how symbols are constructed, by using a Symbol format field that
controls the symbol formatting in much greater detail. See “Code Generation
Options and Optimizations” in the Real-Time Workshop Embedded Coder
documentation for more information.

2-83

2 Code Generation and the Build Process

2-84

Generated Source Files and File Dependencies

The source and make files created by Real-Time Workshop are generated into
your build directory, which is created or reused in your current directory.
Some files are unconditionally generated, while the existence of others depend
on target settings and options (for example, support files for C-API or external
mode). See “Files and Directories Created by the Build Process” in Getting
Started for descriptions of the generated files.

Note The file packaging of Real-Time Workshop Embedded Coder

targets differs slightly from the file packaging described below. See “Data
Structures and Code Modules” in the Real-Time Workshop Embedded Coder
documentation for more information.

Real-Time Workshop generated source file dependencies are depicted in

the following figure. Arrows coming from a file point to files it includes. As
the illustration notes, other dependencies exist, for example on Simulink
header files tmwtypes.h, simstruc_types.h, and optionally on rtlibsrc.h,
plus C or C++ library files. The diagram maps inclusion relations between
only those files that are generated in the build directory. Utility and model
reference code located in a project directory might also be referenced by these
files. See “Project Directory Structure for Model Reference Targets” on page
4-30 for details.

The diagram shows that parent system header files (model.h) include all child
subsystem header files (subsystem.h). In more layered models, subsystems
similarly include their children’s header files, on down the model hierarchy.
As a consequence, subsystems are able to recursively “see” into all their
descendants’ subsystems, as well as to see into the root system (because every
subsystem.c or subsystem.cpp includes model.h and model private.h).

Inferacting with the Build Process

/’ model private.h

model .c subsystem.c model data.c

\

subsystem.h

rtmodel.his o +

dummy include model types.h

file used only
for grt und ' j
grt_muolloc torpets
model . h
rtmodel .h —W

Real-Time Workshop Generated File Dependencies

Note In the preceding figure, files model.h, model private.h, and
subsystem.h also depend on Real-Time Workshop header file rtwtypes.h, and
conditionally on rtlibsrc.h. Targets that are not based on the ERT target
can have additional dependencies on tmwtypes.h and simstruct_types.h.

Consider the following specific dependencies and requirements:

¢ “Header Dependencies When Interfacing Legacy/Custom Code with
Generated Code” on page 2-86

* “Dependencies of the Model’s Generated code” on page 2-96

® “Specifying Include Paths in Real-Time Workshop Generated Source Files”
on page 2-101

2-85

2 Code Generation and the Build Process

2-86

Header Dependencies When Interfacing Legacy/Custom Code
with Generated Code

You can incorporate legacy or custom code into a Real-Time Workshop build in
any of several ways. One common approach is by creating S-functions. For
details on this approach, see Chapter 10, “Writing S-Functions for Real-Time
Workshop”.

Another approach is to interface code using global variables created

by declaring storage classes for signals and parameters. This requires
customizing an outer code harness, typically referred to as a main.c or
main.cpp file, to properly execute to the generated code. In addition, the
harness can contain custom code.

These scenarios require you to include header files specific to Real-Time
Workshop to make available the needed function declarations, type
definitions, and defines to the legacy or custom code.

The two relevant Real-Time Workshop generated header files include:

* “rtwtypes.h” on page 2-86
* “model.h” on page 2-90

rtwtypes.h. The header file rtwtypes.h defines data types, structures, and
macros required by the code that Real-Time Workshop generates. Normally,
you should include rtwtypes.h for both GRT and ERT targets instead of
including tmwtypes.h or simstruc_types.h. However, the contents of the
header file varies depending on your target selection.

Inferacting with the Build Process

For... rtwtypes.h

GRT target Provides a complete set of definitions by including
tmwtypes.h and simstruct_types.h, both of which
depend on

¢ System headers 1limits.h and float.h

® Headers specific to Real-Time Workshop:
rtw_matlogging.h, rtw_extmode.h,
rtw_continuous.h, and rtw_solver.h

ERT target and Is optimized, when possible, to include a minimum set
targets based on of #define statements, enumerations, and so on; does
the ERT target not include tmwtypes.h and simstruct types.h

Real-Time Workshop generates the optimized version of rtwtypes.h for the
ERT target when both of the following conditions exist:

The GRT compaitble call interface option on the Real-Time
Workshop > Interfacepane of the Configuration Parameters dialog box is
cleared.

The model contains no noninlined S-functions

You should always include rtwtypes.h. If you include it for GRT targets, for
example, it is easier to use your code with ERT-based targets.

rtwtypes.h for GRT targets:

#ifndef _ RTWTYPES H
#define _ RTWTYPES H
#include "tmwtypes.h"

/* This ID is used to detect inclusion of an incompatible
* rtwtypes.h

*/

#define RTWTYPES_ID C08S16I32L32N32F1

#include "simstruc_types.h"
#ifndef POINTER_T

define POINTER_T

typedef void * pointer_T;

2-87

2 Code Generation and the Build Process

2-88

#endif

#ifndef TRUE

define TRUE (1)
#endif

#ifndef FALSE

define FALSE (0)
#endif

#endif

Top of rtwtypes.h for ERT targets:

#ifndef _ RTWTYPES H__
#define _ RTWTYPES H__
#ifndef _ TMWTYPES__
#define _ TMWTYPES_

#include <limits.h>

/*
* Target hardware information

* Device type: 32-bit Generic

* Number of bits: char: 8 short:
* long: 32
* Byte ordering: Unspecified

16 int: 32

native word size: 32

* 8igned integer division rounds to: Undefined

* Shift right on a signed integer as arithmetic shift: on

/* This ID is used to detect inclusion of an incompatible rtwtypes.h */

#define RTWTYPES_ID_CO08S16I32L32N32F1

/*
* Fixed width word size data types:
* int8_ T, int16_T, int32_T - signed 8,

16, or 32 bit integers

* uint8_T, uint16_T, uint32_T - unsigned 8, 16, or 32 bit integers

* real32_T, real64_T - 32 and 64 bit floating point numbers

*

typedef signed char int8_T;
typedef unsigned char uint8_T;

*/

*/

Inferacting with the Build Process

typedef short int16_T;

typedef unsigned short uinti16_T;
typedef int int32_T;

typedef unsigned int uint32_T;
typedef float real32_T;

typedef double real64_T;

For GRT and ERT targets, the location of rtwtypes.h depends on whether the
build uses the shared utilities location. If you use a shared location, Real-Time
Workshop places rtwtypes.hin slprj/target/_sharedutils; otherwise, it
places rtwtypes.h in the standard build directory (model target rtw). See
“Sharing Utility Functions” on page 4-48 for more information on when and
how to use the shared utilities location.

The header file rtwtypes.h should be included by source files that use
Real-Time Workshop type names or other Real-Time Workshop definitions. A
typical example is for files that declare variables using a Real-Time Workshop
data type, for example, uint32_T myvar;.

A sourece file that is intended to be used by Real-Time Workshop and by a
Simulink S-function can leverage the preprocessor macro MATLAB_MEX_ FILE,
which is defined by the mex function:

#ifdef MATLAB_MEX FILE
#include "tmwtypes.h"
#else

#include "rtwtypes.h"
f#endif

A source file meant to be used as the Real-Time Workshop main.c (or .cpp)
file would also include rtwtypes.h without any preprocessor checks.

#include "rtwtypes.h"

Custom source files that are generated using the Target Language Compiler
can also emit these include statements into their generated file.

2-89

2 Code Generation and the Build Process

model.h. The header file model .h declares model data structures and a public
interface to the model entry points and data structures. This header file also
provides an interface to the real-time model data structure (model M) by
using access macros. If your code interfaces to model functions or model data
structures, as illustrated below, you should include model . h:

* Exported global signals

extern int32_T INPUT; /* '<Root>/In' */

® Global structure definitions

/* Block parameters (auto storage) */
extern Parameters_mymodel mymodel P;

e RTM macro definitions

#ifndef rtmGetSampleTime

define rtmGetSampleTime(rtm, idx)
((rtm)->Timing.sampleTimes[idx])
f#endif

® Model entry point functions

extern void ecdemo_initialize(boolean T firstTime);
extern void ecdemo_step(void);

A Real-Time Workshop target’s main.c (or .cpp) file should include model . h.
If the main.c (or .cpp) file is generated from a TLC script, the TLC source
can include model.h using:

#include "%<CompiledModel.Name>.h"
If main.c or main.cpp is a static source file, a fixed header filename can be

used, rtmodel.h for GRT or autobuild.h for ERT. These files include the
model . h header file:

#include "model.h" /* If main.c is generated */

or

2-90

Inferacting with the Build Process

#include "rtmodel.h"

or

/* If static main.c is used with GRT */

#include "autobuild.h" /* If static main.c is used with ERT */

Other custom source files may also need to include model .h if there is a need
to interface to model data, for example exported global parameters or signals.
The model . h file itself can have additional header dependencies, as listed in
the tables System Header Files on page 2-91 and Real-Time Workshop Header
Files on page 2-93, due to requirements of generated code.

System Header Files

Header File Purpose GRT Targets ERT Targets
<float.h> Defines math Not included Included when generated code
constants honors the Stop time solver
configuration parameter due to
one of the following Real-Time
Workshop interface option
settings:
e MAT-file logging selected
* Interface set to External
mode
<math.h> Provides Always included Included if you select the
floating-point math Real-Time Workshop interface
functions configuration parameter
Support floating-point
numbers
<stddef.h> Defines NULL Always included Always included
<stdio.h> Provides file I/O Included when the | Included when the model
functions model includes a includes a To File block and you

To File block

select the MAT-file logging
Real-Time Workshop interface
configuration parameter

2-91

2 Code Generation and the Build Process

2-92

System Header Files (Continued)

Header File

Purpose

GRT Targets

ERT Targets

<stdlib.h>

Provides utility
functions such as
div() and abs()

Included when the

model includes

e A Stateflow
chart

e A Math
Function block
configured for
mod () or rem(),
which generate
calls to div ()

Included when the model

includes

o A Stateflow chart and
you select the Support
floating-point numbers
Real-Time Workshop interface
configuration parameter

e A Math Function block
configured for mod () or rem(),
which generate calls to div ()

<string.h>

Provides memory
functions such
as memset () and

memcpy ()

Always included
due to use of
memset () in model
initialization code

Included when block or model
initialization code calls memcpy ()
or memset ()

For a list of relevant blocks,
enter showblockdatatypetable
in the MATLAB Command
Window and look for blocks with
the N2 note.

To omit calls to memset ()
from model initialization code,
select theRemove root level
I/0 zero initialization and
Remove internal state zero
initialization optimization
configuration parameters.

Inferacting with the Build Process

Real-Time Workshop Header Files

Header File Purpose

GRT Targets

ERT Targets

dt_info.h Defines data Included when you | Included when you configure a
structures for configure a model | model for external mode
external mode for external mode

ext_work.h Defines external Included when you | Included when you configure a

mode functions

configure a model
for external mode

model for external mode

Provides
fixed-point support
for noninlined
S-functions

fixedpoint.h

Always included

Included when either of the

following conditions exists:

¢ The model uses noninlined
S-functions

® You select the Real-Time
Workshop interface
configuration parameter GRT
compatible call interface

model types.h Defines Always included Always included
model-specific data
types

rt_logging.h Supports MAT-file | Always included Included when you select the
logging Real-Time Workshop interface

configuration parameter
MAT-file logging

rt_nonfinite.h Provides support
for nonfinite
numbers in the

generated code

Always included

Included when you select

one of the following
Real-Time Workshop interface
configuration parameters:

¢ MAT-file logging

* Support non-finite
numbers (and the generated
code requires non-finite
numbers)

2-93

2 Code Generation and the Build Process

2-94

Real-Time Workshop Header Files (Continued)

Header File

Purpose

GRT Targets

ERT Targets

rtlibsrc.h

Provides functions,
macros, and
constants defined

Included when
generated code
uses the Real-Time

Included when generated code
uses the Real-Time Workshop
library

in the Real-Time Workshop library
Workshop library
rtw_continuous.h | Supports Always Included when you select the

continuous time

included by
simstruc_types.h

Real-Time Workshop interface
configuration parameter
Support continuous time
and simstruc.h is not already
included

rtw_extmode.h

Supports external
mode

Always
included by
simstruc_types.h

Included when you configure
the model for external mode
and simstruc.h is not already
included

rtw_matlogging.h

Supports MAT-file
logging

Included by
simstruc_types.h
and
rtw_logging.h

Included by rtw_logging.h

rtw_solver.h

Supports
continuous states

Always
included by
simstruc_types.h

Included when you select the
Real-Time Workshop interface
configuration parameter
Support floating-point

numbers and simstruc.h is not

already included

rtwtypes.h

Defines Real-Time
Workshop data

types; generated
file

Always included;
use the complete
version of the file,
which includes
tmwtypes.h and
simstruc_types.h
(see
simstruc_types.h
for dependencies)

Always included; use the
complete or optimized version
of the file as explained in
“rtwtypes.h” on page 2-86

Inferacting with the Build Process

Real-Time Workshop Header Files (Continued)

Header File

Purpose

GRT Targets

ERT Targets

simstruc.h

Provides support
for calling
noninlined
S-functions that
use the Simstruct
definition; also
includes limits.h,
string.h,
tmwtypes.h, and
simstruc_types.h

Always included

Included when either of the

following conditions exists:

¢ The model uses noninlined
S-functions

® You select the Real-Time
Workshop interface
configuration parameter GRT
compatible call interface

simstruc_types.h

Provides
definitions used

by generated code
and includes

the header files
rtw_matlogging.h,
rtw_extmode.h,
rtw_continuous.h,
rtw_solver.h, and
sysran_types.h

Always included
with rtwtypes.h

Not included; rtwtypes.h
contains needed definitions and
model . h contains needed header
files

sysran_types.h

Supports external
mode

Always
included by
simstruc_types.h

Included when you configure
the model for external mode
and simstruc.h is not already
included

Note Header file dependencies noted in the preceding table apply to the
system target files grt.tlc and ert.tlc. Targets derived from these base
targets may have additional header dependencies. Also, code generation
for blocks from blocksets, embedded targets, and custom S-functions may

introduce additional header dependencies.

2-95

2 Code Generation and the Build Process

2-96

Dependencies of the Model’s Generated code

Real-Time Workshop can directly build standalone executables for the host
system such as when using the GRT target. Several processor- and OS-specific
targets also provide automated builds using a cross-compiler. All of these
targets are typically makefile-based interfaces for which Real-Time Workshop
provides a “Template MakeFile (TMF) to makefile” conversion capability. Part
of this conversion process is to include in the generated makefile all of the
source file, header file, and library file information needed (the dependencies)
for a successful compilation.

In other instances, the generated model code needs to be integrated into a
specific application. Or, it may be desired to enter the generated files and
any file dependencies into a configuration management system. This section
discusses the various aspects of the generated code dependencies and how to
determine them.

Typically, the generated code for a model consists of a small set of files:

® model.c or model.cpp

® model.h

® model data.c or model data.cpp

® model private.h

® rtwtypes.h

These are generated in the build directory for a standalone model or a
subdirectory under the slprj directory for a model reference target. There is
also a top-level main.c (or .cpp) file that calls the top-level model functions
to execute the model. main.c (or .cpp) is a static (not generated) file (such
as grt_main.c or grt_main.cpp for GRT-based targets), and is either a

static file (ert_main.c or ert_main.cpp) or is dynamically generated for
ERT-based targets.

The preceding files also have dependencies on other files, which occur due to:

¢ Including other header files
¢ Using macros declared in other header files

e (Calling functions declared in other source files

Inferacting with the Build Process

® Accessing variables declared in other source files

These dependencies are introduced for a number of reasons such as:

Blocks in a model generate code that makes function calls. This can occur
in several forms:

The called functions are declared in other source files. In some cases
such as a blockset, these source file dependencies are typically managed
by compiling them into a library file.

In other cases, the called functions are provided by the compilers own
run-time library, such as for functions in the ANSI-C header, math.h.

Some function dependencies are themselves generated files. Some
examples are for fixed-point utilities and nonfinite support. These
dependencies are referred to as shared utilities. The generated functions
can appear in files in the build directory for standalone models or in
the sharedutils directory under the slprj directory for builds that
involve model reference.

Models with continuous time require solver source code files.

Real-Time Workshop options such as external mode, C-API, and MAT-file
logging are examples that trigger additional dependencies.

Specifying custom code can introduce dependencies.

The following topics provide more information on dependencies:

“Providing the Dependencies” on page 2-97

“Makefile Considerations” on page 2-99

“Real-Time Workshop Static File Dependencies” on page 2-100

“Blockset Static File Dependencies” on page 2-101

Providing the Dependencies. Real-Time Workshop provides several
mechanisms for feeding file dependency information into the Real-Time
Workshop build process. The mechanisms available to you depend on whether
your dependencies are block based or are model or target based.

For block dependencies, consider using

2-97

2 Code Generation and the Build Process

2-98

e S-functions and blocksets

= Directories that contain S-function MEX-files used by a model are added
to the header include path.

= Makefile rules are created for these directories to allow source code to
be found.

= For S-functions that are not inlined with a TLC file, the S-function
source filename is added to the list of sources to compile.

= The S-Function block parameter SFunctionModules provides the ability
to specify additional source filenames.

= The rtwmakecfg.m mechanism provides further capability in specifying
dependencies. See “Using the rtwmakecfg.m API” on page 10-80 for
more information.

For more information on applying these approaches to legacy or custom
code integration, see Chapter 10, “Writing S-Functions for Real-Time
Workshop”.

S-Function Builder block, which provides its own GUI for specifying
dependency information

For model- or target-based dependencies, such as custom header files,
consider using

¢ The Real-Time Workshop/Custom Code pane of the Configuration

Parameters dialog box, which provides the ability to specify additional
libraries, source files, and include directories.

TLC functions LibAddToCommonIncludes() and LibAddToModelSources(),
which allow you to specify dependencies during the TLC

phase. See “LibAddToCommonIncludes(incFileName)”

and “LibAddSourceFileCustomSection

(file, builtInSection, newSection)” in the Target

Language Compiler documentation for details. Real-Time Workshop
Embedded Coder also provides a TLC-based customization template
capability for generating additional source files.

Inferacting with the Build Process

Makefile Considerations. As previously mentioned, Real-Time Workshop
targets are typically makefile based and Real-Time Workshop provides a
“Template MakeFile (TMF) to makefile” conversion capability. The template
makefile contains a token expansion mechanism in which the build process
expands different tokens in the makefile to include the additional dependency
information. The resulting makefile contains the complete dependency
information. See the Real-Time Workshop Embedded Coder Developing
Embedded Targets documentation for more information on working with
template makefiles.

The generated makefile contains the following information:

® Names of the source file dependencies (by using various SRC variables)
® Directories where source files are located (by using unique rules)

® Location of the header files (by using the INCLUDE variables)

® Precompiled library dependencies (by using the LIB variables)

¢ Libraries which need to be compiled and created (by using rules and the
LIB variables)

A property of make utilities is that the specific location for a given source C or
C++ file does not need to be specified. If there is a rule for that directory and
the source filename is a prerequisite in the makefile, the make utility can find
the source file and compile it. Similarly, the C or C++ compiler (preprocessor)
does not require absolute paths to the headers. Given the name of header
file by using an #include directive and an include path, it is able to find

the header. The generated C or C++ source code depends on this standard
compiler capability.

Also, libraries are typically created and linked against, but occlude the specific
functions that are being used.

Although the build process is successful and can create a minimum-size
executable, these properties can make it difficult to manually determine the
minimum list of file dependencies along with their fully qualified paths. The
makefile can be used as a starting point to determining the dependencies
that the generated model code has.

2-99

2 Code Generation and the Build Process

2-100

An additional approach to determining the dependencies is by using linker
information, such as a linker map file, to determine the symbol dependencies.
The location of Real-Time Workshop and blockset source and header files is
provided below to assist in locating the dependencies.

Real-Time Workshop Static File Dependencies. Several locations in the
MATLAB directory tree contain static file dependencies specific to Real-Time
Workshop:

® matlabroot/rtw/c/libsrc/

This directory contains many functions on which the generated code can
be dependent. The directory contains a rtwmakecfg.m file which is used to
create the appropriate rules and variables in the generated makefile. The
files in this directory are compiled into a library. For host based targets,
Real-Time Workshop provides a precompiled library for the functions in
this directory. If the optimization options (OPT_OPTS) are changed for a
Real-Time Workshop build, the makefile recompiles the library; otherwise
the precompiled library is used.

® matlabroot/rtw/c/src/

This directory has subdirectories and contains additional files that may
need to be compiled. Examples include solver functions (for continuous
time support), external mode support files, C-API support files, and
S-function support files. Source files in this directory are included into the
build process using in the SRC variables of the makefile.

® matlabroot/rtw/extern/include/*.h

® matlabroot/simulink/include/*.h

These directories contain additional header file dependencies such as
tmwtypes.h, simstruc_types.h, and simstruc.h.

Note For ERT-based targets, several header dependencies from the above
locations can be avoided. ERT-based targets generate the minimum
necessary set of type definitions, macros, and so on, in the file rtwtypes.h.

Inferacting with the Build Process

Blockset Static File Dependencies. Blockset products leverage the
rtwmakecfg.m mechanism to provide Real-Time Workshop with dependency
information. As such, the rtwmakecfg.m file provided by the blockset contains
the listing of include path and source path dependencies for the blockset.
Typically, blocksets create a library from the source files which the generated
model code can then link against. The libraries are created and identify using
the rtwmakecfg.m mechanism, similar to the Real-Time Workshop libsrc
directory. The locations of thertwmakecfg.m files for the blocksets are

® matlabroot/commblks/commblksdemos/rtwmakecfg.m

® matlabroot/commblks/commmex/rtwmakecfg.m

® matlabroot/dspblks/dspmex/rtwmakecfg.m

® matlabroot/fuzzy/fuzzy/rtwmakecfg.m

® matlabroot/physmod/drive/drive/rtwmakecfg.m

® matlabroot/physmod/mech/mech/rtwmakecfg.m

® matlabroot/physmod/powersys/powersys/rtwmakecfg.m

If the model being compiled uses one or more of these blocksets, you can

determine directory and file dependency information from the respective
rtwmakecfg.m file.

Specifying Include Paths in Real-Time Workshop Generated
Source Files

You can add #include statements to generated code. Such references can
come from several sources, including TLC scripts for inlining S-functions,
custom storage classes, bus objects, and data type objects. The included
files typically consist of header files for legacy code or other customizations.
Additionally, you can specify compiler include paths with the -I compiler
option. Real-Time Workshop uses the specified paths to search for included
header files.

Usage scenarios for the generated code include, but are not limited to, the
following:

e Real-Time Workshop generated code is compiled with a custom build
process that requires an environment-specific set of #include statements.

2-101

2 Code Generation and the Build Process

In this scenario, Real-Time Workshop would likely be invoked with the
Generate code only check box selected. It may be appropriate to use
fully qualified paths, relative paths, or just the header filenames in the
#include statements, and additionally leverage include paths.

® The generated code is compiled using the Real-Time Workshop build
process.

In this case, compiler include paths (-I) can be provided to the Real-Time
Workshop build process in several ways:

The Real-Time Workshop > Custom Code pane of the Configuration
Parameters dialog box allows you to specify additional include paths.
The include paths are propagated into the generated makefile when the
template makefile (TMF) is converted to the actual makefile.

The rtwmakecfg.m mechanism allows S-functions to introduce additional
include paths into the Real-Time Workshop build process. The include
paths are propagated when the template makefile (TMF) is converted to
the actual makefile.

When building a custom Real-Time Workshop target that is
makefile-based, the desired include paths can be directly added into the
targets template makefile.

A USER_INCLUDES make variable that specifies a directory in which
Real-Time Workshop should search for included files can be specified on
the Real-Time Workshop make command. For example,

make rtw USER_INCLUDES=-Id:\work\feature1

The user includes are passed to the command-line invocation of the make
utility, which will add them to the overall flags passed to the compiler.

When using these techniques,

* “Recommended Approaches” on page 2-103

® “Directory Dependencies to Avoid” on page 2-103

2-102

Inferacting with the Build Process

Recommended Approaches. Below are recommended approaches for using
#include statements and include paths in conjunction with the Real-Time
Workshop build process to help ensure that the generated code remains
portable and that compatibility problems with future versions of Real-Time
Workshop are minimized.

Assume that additional header files are located at

c:\work\featurei\foo.h
c:\work\feature2\bar.h

* A simple approach is to ensure all #include statements contain only the
filename such as

#include "foo.h"
#include "bar.h"

Then, the include path passed to the compiler should contain all directories
where the headers files exist:

cc -Ic:\work\featurel -Ic:\work\feature2

® A second recommended approach is to use relative paths in #include
statements and provide an anchor directory for these relative paths using
an include path, for example,

#include "featurei\foo.h"
#include "feature2\bar.h"

Then specify the anchor directory (for example \work) to the compiler:

cc -Ic:\work

Directory Dependencies to Avoid. When using the Real-Time Workshop
build process, avoid dependencies on its build and project directory structure,
such as the model ert_rtw build directory or the slprj project directory.
Thus, the #include statements should not just be relative to where the
generated source file exists. For example, if your MATLAB current working
directory is c: \work, a generated model.c source file would be generated
into a subdirectory such as

2-103

2 Code Generation and the Build Process

c:\work\model ert_rtw\model.c

The model . c file would have #include statements of the form

#include "..\featurei\foo.h"
#include "..\feature2\bar.h"

However, as this creates a dependency on the Real-Time Workshop directory
structure, you should instead use one of the approaches described above.

Reloading Code from the Model Explorer

You can reload the code generated for a model from the Model Explorer.
1 Click the Code for model node in the Model Hierarchy pane.
2 In the Code pane, click the Refresh link.

E& Model Explorer [_ (O] =]
File Edit Wiew Tools Add Help

[smax EMcE%70 00 45wz A

JJSearch: Ib_l,l Block Type LI Type: IEonstant LI % Search ‘
Model Hierarchy Contents of: riwdemo_f14/Code Code
- [E9]Simuiink Root [Hame [Modiied Code for rtwdemo_f14
BjBase Worksaace [£] HTML Repart Model Mame: rtwdema_f14
E--Ertwdemo_f‘lél I:@ This Modsl
----ﬁModeI Workspace Ezxplicitly Referenced Models: None

----%Eonfiguration [Active]

i — o Implicitly Referenced Models: Hone
& oL Lode for rhwdemno_ 4

@Advice far thwdema_f14 Code Recompile Command: run rtwrebuild

----E’Aircraﬂ Dynamics Model Build Directory Root: D:work bestit

- [FElBuild ERT

----ﬁlBuild GRT Generated Source File is older than Model File: Mo

""E’EUNUUHET HTHML Report: click to open

e EefDrydon Wind Gust Mode Configuration Settings at the Time of Code Generation: tick to op

""E’NZ plot caleulation onfiguration Settings at the Time of Code Generation: click to open

Refresh: click to reload from curent directory
4] | 2|
4| | _>| Conterts | Search Results I Fievert | Help | Apply |

4

Real-Time Workshop reloads the code for the model from the build directory.

2-104

Inferacting with the Build Process

Rebuilding Generated Code

If you update generated source code or makefiles manually to add
customizations, you can rebuild the files with the rtwrebuild command. This
command recompiles the modified files by invoking the generated makefile.
To use this command from the Model Explorer,

1 In the Model Hierarchy pane, expand the node for the model of interest.
2 Click the Code for model node.

3 In the Code pane, click run rtwrebuild, listed to the right of the label
Code Recompile Command.

Alternatively, you can use the command as follows:

If... Issue the Command...

Your current working directory is the rtwrebuild()
model’s build directory

Your current working directory is one rtwrebuild(model)
level above the model’s build directory
(pwd when the Real-Time Workshop
build was initiated)

You want to specify the path to the rtwrebuild(path)
model’s build directory

If your model includes submodels, Real-Time Workshop builds the submodels
recursively before rebuilding the top model.

Profiling Generated Code

If you have a need to profile the code Real-Time Workshop generates for a
model, you can do so with the TLC hook function interface demonstrated in
rtwdemo_profile. To use the profile hook interface, you

1 Set up a TLC file that defines the following TLC hook functions:

2-105

2 Code Generation and the Build Process

Function Input Arguments Description

ProfilerHeaders void Return an array of the header filenames
to be included in the generated code.

ProfilerTypedefs void Generate code statements for profiler
type definitions.

ProfilerGlobalData system Generate code statements that declare
global data.

ProfilerExternDataDecls [system Generate code statements that create

global extern declarations.

ProfilerSysDecl

system, functionType

Generate code for variable declarations
that needed within the scope of an
atomic subsystem’s Output, Update,
OutputUpdate, or Derivatives
function.

ProfilerSysStart

system, functionType

Generate code that starts the
profiler within the scope of an
atomic subsystem’s Output, Update,
OutputUpdate, or Derivatives
function.

ProfilerSysEnd

system, functionType

Generate code that stops the profiler
within the scope of an atomic
subsystem’s Output, Update,
OutputUpdate, or Derivatives
function.

ProfilerSysTerminate

system

Generate code that terminates profiling
(and possibly reports results) for an
atomic subsystem.

For an example of a .tlc file that applies these functions, see
matlabroot/toolbox/rtw/rtwdemos/rtwdemo_profile hook.tlc.

2 In your target.tlc file, define the following global variables:

2-106

Inferacting with the Build Process

Define... To Be...

ProfilerTLC The name of the TLC file you created in
step 1

ProfileGenCode TLC_TRUE

3 Build the model. Real-Time Workshop embeds the profiling code in
appropriate locations in the generated code for your model.

For details on the hook function interface, see the instructions and sample
.tlc file provided with rtwdemo_profile. For details on programming a
.t1lc file and defining TLC configuration variables, see the Target Language
Compiler documentation.

2-107

2 Code Generation and the Build Process

Customizing the Build Process

2-108

® “Controlling the Compiling and Linking Phases of the Build Process” on
page 2-108

® “Cross-Compiling Code Generated on Windows” on page 2-109

® “Controlling the Location and Names of Libraries During the Build
Process” on page 2-112
* “Recompiling Precompiled Libraries” on page 2-116

® “Customizing Post Code Generation Build Processing” on page 2-116

Controlling the Compiling and Linking Phases of the
Build Process
After generating code for a model, Real-Time Workshop determines whether

or not to compile and link an executable program. This decision is governed
by the following:

* Generate code only option

When you select this option, Real-Time Workshop generates code for the
model, including a makefile.

* Generate makefile option

When you clear this option, Real-Time Workshop does not generate
a makefile for the model. You must specify any post code generation
processing,including compilation and linking, as a user-defined command,
as explained in “Customizing Post Code Generation Build Processing” on
page 2-116.
* Makefile-only target

The Visual C/C++ Project Makefile versions of the grt, grt_malloc, and
Real-Time Workshop Embedded Coder target configurations generate a
Visual C/C++ project makefile (model.mak). To build an executable, you

must open model .mak in the Visual C/C++ IDE and compile and link the
model code.

® HOST template makefile variable

Customizing the Build Process

The template makefile variable HOST identifies the type of system upon
which your executable is intended to run. The variable can be set to one of
three possible values: PC, UNIX, or ANY.

By default, HOST is set to UNIX in template makefiles designed for use with
UNIX (such as grt_unix.tmf), and to PC in the template makefiles designed
for use with development systems for the PC (such as grt_vc.tmf).

If Simulink is running on the same type of system as that specified by the
HOST variable, then the executable is built. Otherwise,

= IfHOST = ANY, an executable is still built. This option is useful when
you want to cross-compile a program for a system other than the one
Simulink is running on.

= Otherwise, processing stops after generating the model code and the
makefile; the following message is displayed on the MATLAB command
line.

Make will not be invoked - template makefile is for a different host

TGT_FCN_LIB template makefile variable

The template makefile variable TGT_FCN_LIB specifies compiler command
line options. The line in the makefile is TGT_FCN_LIB = |>TGT_FCN_LIB<].
By default, Real-Time Workshop expands the |>TGT_FCN_LIB<| token to
match the setting of the Target floating-point math environment
option on the Real-Time Workshop/Interface pane of the Configuration
Parameters dialog box. Possible values for this option include ANSI C,
IS0_C, and GNU. You can use this token in a makefile conditional statement
to specify compiler options to be used. For example, if you set the token

to ISO_C, the compiler might need an additional option set to support C99
library functions.

Cross-Compiling Code Generated on Windows

If you need to generate code with Real-Time Workshop on a Windows system
but compile the generated code on a supported platform other than Windows,
you can do so by modifying your TMF and model configuration parameters.
For example, you would need to do this if you develop applications with
MATLAB and Simulink on Windows, but you run your generated code on

a Linux system.

2-109

2 Code Generation and the Build Process

2-110

To set up a cross-compilation development environment, do the following
(here Linux is the destination platform):

1 On your Windows system, copy the UNIX TMF for your target to a local
directory. This will be your working directory for initiating code generation.
For example, you might copy matlabroot/rtw/c/grt/grt_unix.tmf to
D:/work/my_grt_unix.tmf.

2 Make the following changes to your copy of the TMF:
® Add the following line near the SYS_TARGET_FILE = line:

MAKEFILE FILESEP = /

e Search for the line 'ifeq ($(OPT_OPTS),$(DEFAULT_OPT_OPTS))' and,
for each occurrence, remove the conditional logic and retain only the
'else’' code. That is, remove everything from the 'if' to the 'else’,
inclusive, as well as the closing 'endif'. Only the lines from the 'else
portion should remain. This forces the run-time libraries to build for
Linux.

3 Open your model and make the following changes in the Real-Time
Workshop pane of the Configuration Parameters dialog:

® Specify the name of your new TMF in the Template makefile text box
(for example, my _grt_unix.tmf).

* Select Generate code only and click Apply.
4 Generate the code.

5 If the build directory (directory from which the model was built)
is not already Linux accessible, copy it to a Linux accessible path.
For example, if your build directory for the generated code was
D:\work\mymodel grt rtw, copy that entire directory tree to a path such
as /home/user/mymodel grt_rtw.

6 If the Windows MATLAB directory tree is Linux accessible, skip this
step. Otherwise, you must copy all the include and source directories to
a Linux accessible drive partition, for example, /home/user/myinstall.
These directories appear in the makefile after MATLAB_INCLUDES = and
ADD_INCLUDES = and can be found by searching for $ (MATLAB_ROOT). Any

Customizing the Build Process

path that contains $ (MATLAB_ROOT) must be copied. Here is an example
list (your list will vary depending on your model):

MATLAB_ROOT) /rtw/c/grt
MATLAB_ROOT) /extern/include
MATLAB_ROOT) /simulink/include
MATLAB_ROOT) /rtw/c/src
MATLAB_ROOT) /rtw/c/libsrc

$
$
$
$
$
$ (MATLAB_ROOT) /rtw/c/tools

—~ o~~~ o~ o~

Additionally, paths containing $ (MATLAB_ROOT) in the build rules (lines
with %.0 :) must be copied. For example, based on the build rule

%.0 : $(MATLAB_ROOT)/rtw/c/src/ext_mode/tcpip/%.c

the following directory should be copied:

$(MATLAB_ROOT) /rtw/c/src/ext_mode/tcpip

Note The path hierarchy relative to the MATLAB root must be
maintained. For example, c: \MATLAB\rtw\c\tools* would be copied to
/home/user/mlroot/rtw/c/tools/*.

For some blocksets, it is easiest to copy a higher-level directory that
includes the subdirectories listed in the makefile. For example, the Signal
Processing Bockset requires the following directories to be copied:

$ (MATLAB_ROOT) /toolbox/dspblks
$ (MATLAB_ROOT) /toolbox/rtw/dspblks

Make the following changes to the generated makefile:

® Set both MATLAB_ROOT and ALT_MATLAB_ROOT equal to the Linux
accessible path to matlabroot (for example, home/user/myinstall).

® Set COMPUTER to the appropriate computer value, such as GLNX86. Enter
help computer in the MATLAB Command Window for a list of computer
values.

2-111

2 Code Generation and the Build Process

2-112

® In the ADD_INCLUDES list, change the build directory (designating the
location of the generated code on the Windows system) and parent
directories to Linux accessible include directories. For example, change
D:\work\mymodel grt rtw\ to /home/user/mymodel grt rtw.

Additionally, if matlabroot is a UNC path, such as
\\my-server\myapps\matlab, replace the hard-coded MATLAB root
with $(MATLAB_ROOT).

8 From a Linux shell, compile the code you generated on Windows. You can
do this by running the generated model .bat file or by typing the make
command line as it appears in the .bat file.

Note If errors occur during makefile execution, you may need to run the
dos2unix utility on the makefile (for example, dos2unix mymodel.mk).

Controlling the Location and Names of Libraries
During the Build Process

Two configuration parameters, TargetPreCompLibLocation and
TargetLibSuffix, are available for you to use to control values placed in
Real-Time Workshop generated makefiles during the token expansion from
template makefiles (TMF's). You can use these parameters to

¢ Control the location of precompiled libraries, such as blockset libraries or
the Real-Time Workshop library. Typically, a target has cross-compiled
versions of these libraries and places them in a target-specific directory.

¢ Control the library suffix naming (for example, target.aor target.lib).

Targets can set the parameters inside the system target file (STF) select
callback. For example:

function mytarget _select callback _handler(varargin)
hDig=varargin{1};
hSrc=varargin{2};
slConfigUISetval(hDig, hSrc,...
'TargetPreCompLibLocation', 'c:\mytarget\precomplibs');
slConfigUISetVal(hDig, hSrc, 'TargetLibSuffix',...
' diab.library');

Customizing the Build Process

The TMF has corresponding expansion tokens:

| >EXPAND_LIBRARY_LOCATION<|
| >EXPAND_LIBRARY_ SUFFIX<|

Alternatively, you can use a call to the set_param function. For example:

set_param(model, 'TargetPreCompLibLocation',...
‘c:\mytarget\precomplibs');

For more detail on using each of these parameters, see

® “Controlling the Location of Precompiled Libraries” on page 2-113
® “Controlling the Suffix Applied to Library Names ” on page 2-114

Controlling the Location of Precompiled Libraries
Use the TargetPreCompLibLocation configuration parameter to:

e Override the precompiled library location specified in the rtwmakecfg.m
file (see “Using the rtwmakecfg.m API” on page 10-80 for details)

® Precompile and distribute target-specific versions of product libraries (for
example, Signal Processing Blockset, rtlibsrc, and so on)

For a precompiled library, such as a blockset library or the Real-Time
Workshop library, the location specified in rtwmakecfg.m is typically a
location specific to the blockset or to Real-Time Workshop. It is expected that
the library will exist in this location and it is linked against during Real-Time
Workshop builds.

However, for some applications, such as custom targets, it is preferable to
locate the precompiled libraries in a target-specific or other alternate location
rather than in the location specified in rtwmakecfg.m. For a custom target,
the library is expected to be created using the target-specific cross-compiler
and placed in the target-specific location for use during the Real-Time
Workshop build process. All libraries intended to be supported by the target
should be compiled and placed in the target-specific location.

You can set up the TargetPreCompLibLocation parameter in its select
callback. For example:

2-113

2 Code Generation and the Build Process

slConfigUISetVal(hDlg, hSrc, 'TargetPreCompLibLocation',...
‘c:\mytarget\precomplibs');

Alternatively, you set the parameter with a call to the set_param function.
For example:

set_param(model, 'TargetPreCompLibLocation',...
‘c:\mytarget\precomplibs');

During the TMF-to-makefile conversion, Real-Time Workshop replaces
the token |>EXPAND_LIBRARY_LOCATION<| with the specified location in
the rtwmakecfg.m file. For example, if the library name specified in the
rtwmakecfg.m file is 'rtwlib', the TMF expands from:

LIBS += |>EXPAND_LIBRARY_LOCATION<|\|>EXPAND_LIBRARY NAME<]|\
| >EXPAND_LIBRARY_ SUFFIX<|

to:

LIBS += c:\mytarget\precomplibs\rtwlib diab.library

By default, TargetPreCompLibLocation is an empty string and Real-Time
Workshop uses the location specified in rtwmakecfg.m for the token
replacement.

Controlling the Suffix Applied to Library Names

Use the TargetLibSuffix configuration parameter to control the suffix
applied to library names (for example, target.a) in the following two areas:

e Libraries on which a target depends, as specified in the rtwmakecfg.m API.
You can use TargetLibSuffix to affect the suffix of both precompiled and
non-precompiled libraries configured from the rtwmakecfg API. For details,
see “Using the rtwmakecfg.m API” on page 10-80.

In this case, a target can set the parameter in its select callback. For
example:

slConfigUISetVal(hDlg, hSrc, 'TargetLibSuffix',...
' diab.library');

2-114

Customizing the Build Process

Alternatively, you can use a call to the set_param function. For example:

set_param(model, 'TargetLibSuffix',' diab.library');

During the TMF-to-makefile conversion, Real-Time Workshop replaces the
token |>EXPAND_LIBRARY_SUFFIX<| with the specified suffix. For example,
if the library name specified in the rtwmakecfg.m file is 'rtwlib', the
TMF expands from:

LIBS += |>EXPAND_LIBRARY_LOCATION<|\|>EXPAND_LIBRARY NAME<]|\
| >EXPAND_LIBRARY_ SUFFIX<|

to:

LIBS += c:\mytarget\precomplibs\rtwlib diab.library

By default, TargetLibSuffix is set to an empty string. In this case,
Real-Time Workshop replaces the token |>EXPAND_LIBRARY_SUFFIX<|
with an empty string.

Shared utility library and the model libraries created with model
reference. For these cases, associated makefile variables do not require the
| >EXPAND_LIBRARY_SUFFIX| token. Instead, Real-Time Workshop includes
TargetLibSuffix implicitly. For example, for a top model named topmodel
with submodels named submodel1 and submodel2, the top model’s TMF is
expanded from:

SHARED L1IB
MODELLIB
MODELREF_LINK_ LIBS

| >SHARED_LIB<|
| >MODELLIB< |
| >MODELREF_LINK_LIBS<|

to:
SHARED L1IB =\
..\slprj\ert_sharedutils\rtwshared _diab.library
MODELLIB = topmodellib_diab.library

MODELREF_LINK LIBS = \
submodeli rtwlib_diab.library submodel2 rtwlib_diab.library

By default, the TargetLibSuffix parameter is an empty string. In this
case, Real-Time Workshop chooses a default suffix for these three tokens

2-115

2 Code Generation and the Build Process

2-116

using a file extension of .1ib on PC hosts and .a on UNIX hosts. For
example, on a PC host, the expanded makefile values would be:

SHARED L1IB = ..\slprj\ert_sharedutils\rtwshared.lib
MODELLIB topmodellib.1lib
MODELREF_LINK_LIBS = submodeli_rtwlib.lib submodel2_rtwlib.1lib

Recompiling Precompiled Libraries

You can recompile precompiled libraries included as part of the Real-Time
Workshop product, such as rtwlib or dsplib, by using a supplied M-file
function, rtw_precompile libs. You might consider doing this if you need
to customize compiler settings for various platforms or environments. For
details on using rtw_precompile libs, see “Precompiling S-Function
Libraries” on page 10-86.

Customizing Post Code Generation Build Processing

Real-Time Workshop provides a set of tools, including a build information
object, you can use to customize build processing that occurs after code
generation. You might use such customizations for target development

or the integration of third-party tools into your application development
environment. The following figure and the steps that follow show the general
workflow for setting up such customizations.

Customizing the Build Process

Program post code
generation command

v

Define post code
generation command

Suppress makefile
generafion

Generate
a makefile?

Modify post code
generation command

Build model <

A\

A

Yes

1 Program the post code generation command.

2 Define the post code generation command.

3 Suppress makefile generation, if appropriate for your application.

4 Build the model.

5 Modify the command, if necessary, and rebuild the model. Repeat this step

until the build results are acceptable.

Build Information Object
At the start of a model build, Real-Time workshop logs the following build
option and dependency information to a temporary build information object:

® Compiler options

® Preprocessor identifier definitions

2-117

2 Code Generation and the Build Process

¢ Linker options

Source files and paths

Include files and paths

Precompiled external libraries

You can retrieve information from and add information to this object by
using an extensive set of functions. For a list of available functions and
detailed function descriptions, see “Functions — Alphabetical List” in the
Real-Time Workshop documentation. “Programming a Post Code Generation
Command” on page 2-118 explains how to use the functions to control post
code generation build processing.

Programming a Post Code Generation Command

For certain applications, it might be necessary to control aspects of the
build process after Real-Time Workshop generates code. For example, this
is necessary when you develop your own target, or you want to apply an
analysis tool to the generated code before continuing with the build process.
You can apply this level of control to the build process by programming and
then defining a post code generation command.

A post code generation command is an M-file that typically calls functions
that get data from or add data to the model’s build information object. You
can program the command as a script or function.

If You Program the Then the...
Command as a...

Script Script can gain access to the model name and
the build information directly

Function Function can pass the model name and the
build information as arguments

If your post code generation command calls user-defined functions, make sure
the functions are on the MATLAB path. If Real-Time Workshop cannot find a
function you use in your command, the build process errors out.

Customizing the Build Process

You can then call any combination of build information functions to customize
the model’s post code generation build processing.

The following example shows a fragment of a post code generation command
that gets the filenames and paths of the source and include files generated for
a model for analysis.

function analyzegencode(buildInfo)
Get the names and paths of all source and include files
generated for the model and then analyze them.

o°

o°

\O

s buildInfo - build information for my model.

% Define cell array to hold data.
MyBuildInfo={};

% Get source file information.
MyBuildInfo.srcfiles=getSourceFiles(buildInfo, true, true);
MyBuildInfo.srcpaths=getSourcePaths(buildInfo, true);

% Get include (header) file information.
MyBuildInfo.incfiles=getIncludeFiles(buildInfo, true, true);
MyBuildInfo.incpaths=getIncludePaths(buildInfo, true);

% Analyze generated code.

For a list of available functions and detailed function descriptions, see
“Functions — Alphabetical List” in the Real-Time Workshop documentation.

Defining a Post Code Generation Command

After you program a post code generation command, you need to inform
Real-Time Workshop that the command exists and to add it to the

model’s build processing. You do this by defining the command with the
PostCodeGenCommand model configuration parameter. When you define a
post code generation command, Real-Time Workshop evaluates the command

2-119

2 Code Generation and the Build Process

2-120

after generating and writing the model’s code to disk and before generating a
makefile.

As the following syntax lines show, the arguments that you specify when
setting the configuration parameter varies depending on whether you program
the command as a script, function, or set of functions.

Note When defining the command as a function, you can specify an arbitrary
number of input arguments. To pass the model’s name and build information
to the function, specify identifiers mode1lName and buildInfo as arguments.

Script

set_param(model, 'PostCodeGenCommand’,...
'pcgScriptName ') ;

Function

set_param(model, 'PostCodeGenCommand’,...
'pcgFunctionName (modelName) ') ;

Multiple Functions

pcgFunctions=. ..

'pcgFunctioniName (modelName) ;. ..

pcgFunction2Name (buildInfo) ';

set_param(model, 'PostCodeGenCommand’,...
pcgFunctions);

The following call to set_param defines PostCodGenCommand to evaluate the
function analyzegencode.

set_param(model, 'PostCodeGenCommand',...
'analyzegencode (buildInfo)');

Suppressing Makefile Generation

Real-Time Workshop provides the ability to suppress makefile generation
during the build process. For example, you might do this to integrate tools
into the build process that are not driven by makefiles.

Customizing the Build Process

To instruct Real-Time Workshop to not generate a makefile during a model’s
build processing, do one of the following:

® (Clear the Generate makefile option on the Real-Time Workshop pane of
the Configuration Parameters dialog box.

® Set the value of the configuration parameter GenerateMakefile to off.
When you suppress makefile generation,

* You no longer can explicitly specify a make command or template makefile.

® You must specify your own instructions for any post code generation
processing, including compilation and linking, in a post code generation
command as explained in “Programming a Post Code Generation
Command” on page 2-118 and “Defining a Post Code Generation Command”
on page 2-119.

2-121

2 Code Generation and the Build Process

Validating Generated Code

2-122

Ways of validating the code Real-Time Workshop generates for a model
include:

* “Viewing Generated Code” on page 2-122
® “Tracing Generated Code Back to Your Simulink Model” on page 2-124
® “Getting Model Optimization Advice” on page 2-126

Viewing Generated Code

* “Viewing Generated Code in Generated HTML Reports” on page 2-122
* “Viewing Generated Code in Model Explorer” on page 2-123

Viewing Generated Code in Generated HTML Reports

One way to view the code that Real-Time Workshop generates is to set the
Generate HTML report option on the Real-Time Workshop pane of the
Configuration Parameters dialog box. When set, this option generates a
report that contains the following code generation details:

® A Summary section that lists version and date information, and a link to
open configuration settings used for generating the code, including TLC
options and Simulink model settings.

® A Generated Source Files section that contains a table of source code files
generated from your model. You can view the source code in the MATLAB
Help browser. When Real-Time Workshop Embedded Coder is installed,
hyperlinks are placed within the source code that let you trace lines of
code back to the blocks or subsystems from which the code was generated.
Click the hyperlinks to highlight the relevant blocks or subsystems in
a Simulink model window.

Note The report generated for various targets may vary slightly.

Validating Generated Code

Viewing Generated Code in Model Explorer

Another way to view the HTML source code report is to use the Code Viewer
that is built into Model Explorer. You can browse files generated by Real-Time
Workshop, Real-Time Workshop Embedded Coder, and other products directly
in the Model Explorer.

When you generate code, or open a model that has generated code for its
current target configuration in your working directory, the Hierarchy (left)
pane of Model Explorer contains a node named Code for model . Under that
node are other nodes, typically called This Model and Shared Code. Clicking
This Model displays in the Contents (middle) pane a list of source code
files in the build directory of each model that is currently open. The figure
below shows code for the vdp model:

E& Model Explorer [_ (O] =]
File Edit Wiew Tools Add Help
[Dsmax EM<%:H70 @@ 45 anmz A
JJSearch: Ib_l,l Block Type LI Type: IFc:n LI % Search ‘
Model Hierarchy Contents of: This Model Document
E--E‘Simulink Foot | i Modified D:workitestwdp art rbwhwdp.c
é....ﬁBase Warkspace [E] t_nonfinite.c }\ ﬂ
=B vdn”® [) t_rarfirite.h File: D:work\testivdp _grt rtwlvdp.c
ﬁModeI ‘Workspace @ ttmadel h
%Eonfiguration [Active] @ itwiypes.h 1 i
@Eode far wdp s = # pdp.c
b [This Madel @ veinh 3 "
@Advice far wdp @ wilp.mk 4 # Real-Time Workshop code generation for Simuls
--E’Morelnfo @ vip_data.c & *
@ wdp_private h 3 * Model ‘t’ersi on . HE -
@ vdp_types.h 7 * Rezl-Time Workshop wersion ! &.2 (RI45P2) 3
- g * O source code gernerated on @ Thu Dec 14§ 21:2¢
9 =4
iQ
i1 #include "wdp.h"
iz #include "wdp private.h”
i3
14 A% Block sigumals (auto storage) =/
158 ElockIO wdp wvdp B:
1é
17 /* Continuous states */
ia Continuousitates wdp wdp X;
J 10 | _bl—l
4] | 2|
7 |_;| Contents |Search Results I Fevert | Help | Apply |
Done A

2-123

2 Code Generation and the Build Process

2-124

In this example, the file D: /work/test/vdp_grt rtw/vdp.c is being viewed.
To view any file in the Contents pane, click it once.

The views in the Document (right) pane are read only. The code listings
there contain hyperlinks to functions and macros in the generated code. A
hyperlink for the source file (not the HTML version you are looking at) being
viewed sits above it. Clicking it opens that file in a text editing window where
you can modify its contents. This is not something you typically do with
generated source code, but in the event you have placed custom code files in
the build directory, you can edit them as well in this fashion. You can also
take advantage of your editor’s features such as multipane display or custom
syntax coloring.

If an open model contains Model blocks, and if generated code for any of these
models exists in the current slprj directory, nodes for the referenced models
appear in the Hierarchy pane one level below the node for the top model.
Such referenced models do not need to be open for you to browse and read
their generated source files.

If Real-Time Workshop generates shared utility code for a model, a node
named Shared Code appears directly under the This Model node. It collects
any source files that exist in the appropriate . /slprj/target/_sharedutils
subdirectory.

Note Currently, you cannot use the Search tool built into Model Explorer’s
toolbar to search generated code displayed in the Code Viewer. On PCs, typing
Ctrl+F when focused on the Document pane opens a Find dialog box you can
use to search for strings in the currently displayed file. You can also search for
text in the HTML report window, and can open any of the files in the editor.

Tracing Generated Code Back to Your Simulink Model

Real-Time Workshop writes system/block identification tags in the generated
code. The tags are designed to help you identify the block in your source
model that generated a given line of code. Tags are located in comment lines
above each line of generated code, and are provided with hyperlinks in HTML
code generation reports that you can optionally generate.

Validating Generated Code

The tag format is <system>/block_name, where

® system is either
= The string 'root', or
= A unique system number assigned by Simulink

® block_name is the name of the block.

The following code fragment illustrates a tag comment adjacent to a line of
code generated by a Gain block at the root level of the source model:

/* Gain: '<Root>/UnDeadGaint' */
rtb_UnDeadGaini_h = dead_gain U.In1 *
dead_gain_P.UnDeadGaini_Gain;

The following code fragment illustrates a tag comment adjacent to a line of
code generated by a Gain block within a subsystem one level below the root
level of the source model:

/* Gain Block: <S1>/Gain */
dead_gain_B.tempO *= (dead_gain_P.s1_Gain_Gain);

In addition to the tags, Real-Time Workshop documents the tags for each
model in comments in the generated header file model.h. The following
illustrates such a comment, generated from a source model, foo, that has a
subsystem Outer with a nested subsystem Inner:

/* Here is the system hierarchy for this model.

*

* <Root> : foo

* <81> : foo/Outer
* <82> . foo/Outer/Inner
*/

There are two ways to trace code back to subsystems, blocks, and parameters
in your model:

® Through HTML code generation reports by using the Help browser
® By typing the appropriate hilite system commands to MATLAB

2-125

2 Code Generation and the Build Process

When you are licensed for Real-Time Workshop Embedded Coder, the HTML
report for your model.c or model.cpp file displays hyperlinks in “Regarding,”
“Outport,” and other comment lines. Clicking such links in comments causes
the associated block or subsystem to be highlighted in the model diagram. For
more information, see “HTML Code Generation Reports” in Getting Started.

Using HTML reports is generally the fastest way to trace code back to the
model, but when you know what you are looking for you might achieve
the same result at the command line. To manually trace a tag back to the
generating block using the hilite system command,

1 Open the source model.
2 Close any other model windows that are open.

3 Use the MATLAB hilite_ system command to view the desired system
and block.

As an example, consider the model foo mentioned above. If foo is open,
hilite system('<S1>")

opens the subsystem Outer and
hilite system('<S2>/Gaini')

opens the subsystem Outer and selects and highlights the Gain block Gain1
within that subsystem.

Getting Model Optimization Advice

The Model Advisor is a tool that helps you configure any model to optimally
achieve your code generation objectives. Clicking Advice for model in the
Model Hierarchy pane launches the Model Advisor from Model Explorer.
This node is directly below the Code for model node, as the above figure
shows. Clicking the Advice for node causes the Dialog pane to be labeled
Model Advisor, and to contain a link, Start model advisor. When you click
that link, Model Advisor opens a separate HTML window with a set of button
and check box controls.

2-126

Validating Generated Code

Another way to invoke Model Advisor is to type

ModelAdvisor('model')
specifying the name of an open model, at the MATLAB prompt.
You can also select Model Advisor from the Tools menu.

See “Using the Model Advisor” on page 9-4 for more information on Model
Advisor.

2-127

2 Code Generation and the Build Process

Integrating Legacy and Custom Code

2-128

Real-Time Workshop includes mechanisms for integrating generated code with
legacy or custom code. Legacy code is existing C or C++ hand code or code for
environments that needs to be integrated with code generated by Real-Time
Workshop. Custom code can be legacy code or any other user-specified lines of
code that need to be included in the Real-Time Workshop build process.

You can achieve code integration from either of two contexts. You can integrate

® Code generated by Real-Time Workshop into an existing code base for a
larger system. For example, you might want to use generated code as a
plug-in function. For this type of integration, you should use Real-Time
Workshop Embedded Coder. The Real-Time Workshop Embedded Coder
documentation explains how to use entry points and header files to
interface your existing code with generated code.

¢ Existing code into code generated by Real-Time Workshop. This type
of integration can be either block based or model based. “Block-Based
Integration” on page 2-128 and “Model or Target-Based Integration” on
page 2-130 list available code integration mechanisms based on various
application requirements.

Block-Based Integration

The following table lists available block-based integration mechanisms based
on application requirements. The table also provides information on where
to find details on how to apply each mechanism.

Infegrating Legacy and Custom Code

If You Need or Prefer to...

Consider Using...

For Details, See...

¢ Simulate and generate code
such that block behavior is the
same or unique for the two
environments.

® Develop a complete interface to
all Simulink block functions,
block memory, and block
capabilities.

e Use input and output ports
for interaction between and
placement with respect to other
blocks.

® Use Simulink parameters (for
example, run-time parameters).

® Apply code generation
optimizations, such as
expression folding and the
use of local block output ports.

¢ Add file and path information for
existing code into the Real-Time
Workshop build process.
An extensive, block-based
rtwmakecfg API is available.

® Control the location of generated
code through block placement.

e Use TLC library functions for
the block or overall model code.

e Maximize ease-of-use for model
designers.

User written
S-Function blocks

e Chapter 10, “Writing
S-Functions for Real-Time
Workshop”

e “Build Support for
S-Functions” on page
10-77—information on
specifying additional
dependencies for the
Real-Time Workshop build
process

e Target Language Compiler
documentation—information
on inlining S-functions

¢ Simulink Writing S-Functions
documentation

2-129

2 Code Generation and the Build Process

If You Need or Prefer to...

Consider Using...

For Details, See...

Use a graphical user interface to
create S-Function blocks.

Specify build information
through a graphical user
interface.

S-Function Builder
block

Information on the S-Function
Builder block in the Simulink
documentation

Not affect simulation or
simulation-based targets (for
example, Simulink Accelerator,
Model Reference Simulation
Target, Real-Time Workshop
S-function target).

Insert lines of code into functions
at the atomic system or model
level.

Minimize development effort by
just typing in lines of custom
code.

Real-Time Workshop
Custom Code blocks

Chapter 14, “Custom Code
Blocks”

2-130

S-Function blocks offer the most capable and flexible means of integrating
code and specifying additional build information. Their use in a model carries
the build information as well.

Model or Target-Based Integration

The following table lists available model or target-based integration
mechanisms based on application requirements. The table also provides
information on where to find details on how to apply each mechanism.

Infegrating Legacy and Custom Code

If You Need or Prefer to... Consider Using... For Details, See...

¢ Not affect simulation or Real-Time Chapter 2, “Code
simulation-based targets Workshop/Custom Code | Generation and the Build
(Simulink Accelerator, Model pane of the Configuration Process”
Reference Simulation Target, Parameters dialog box
Real-Time Workshop S-function
target).

® Add lines of custom code in the
generated model header or source
file.

e Add lines of custom code to
generated initialization and
termination functions.

® Specify the files and path to be
used for the Real-Time Workshop
build process.

e Minimize development effort by
just typing in lines of custom code,
paths, or filenames.

¢ Use a modeling approach;
include model information as
configuration parameters.

¢ Use a mechanism that affects all | Custom target template Real-Time Workshop
model builds for a given target—is | makefile Embedded Coder
model and block independent. documentation — details

® Include paths, source file rules, om mliessles

and libraries in the makefile.

® Control the build process by
selecting a custom Real-Time
Workshop system target file.

2-131

2 Code Generation and the Build Process

Note It is also possible to affect the Real-Time Workshop build process by
specifying libraries or sources in the Make command field on the Real-Time
Workshop pane of the Configuration Parameters dialog box. This approach
requires knowledge of the make variables used in a target template makefile
and is not generally recommended.

2-132

(Generated Code Formats

Introduction (p. 3-2)

Choosing a Code Format for Your
Application (p. 3-9)

Real-Time Code Format (p. 3-12)

Real-Time malloc Code Format
(p. 3-14)

S-Function Code Format (p. 3-16)

Embedded Code Format (p. 3-16)

Explains the concept of code formats
and relationship to targets

Discusses the applicability and
limitations of code formats and
targets with regard to types of
applications

Describes code generation for
building nonembedded applications

Describes code generation for
building nonembedded applications
with dynamic allocation

Describes code generation for
building S-function targets

Describes code generation for
building embedded applications

3 Generated Code Formats

Introduction

Real-Time Workshop provides five different code formats. Each code format
specifies a framework for code generation suited for specific applications.

The five code formats and corresponding application areas are

® Real-time: Rapid prototyping
® Real-time malloc: Rapid prototyping

e S-function: Creating proprietary S-function DLL or MEX-file objects, code
reuse, and speeding up your simulation

® Model reference: Creating DLL or MEX-file objects from entire models that
other models can use, sometimes in place of S-functions

¢ Embedded C: Deeply embedded systems

This chapter discusses the relationship of code formats to the available target
configurations, and factors you should consider when choosing a code format
and target. This chapter also summarizes the real-time, real-time malloc,
S-function, model referencing, and embedded C/C++ code formats.

Targets and Code Formats

A target (such as the GRT target) is an environment for generating and
building code intended for execution on a certain hardware or operating
system platform. A target is defined at the top level by a system target file,
which in turn invokes other target-specific files.

A code format (such as embedded or real-time) is one property of a target.
The code format controls decisions made at several points in the code
generation process. These include whether and how certain data structures
are generated (for example, SimStruct or rtModel), whether or not static

or dynamic memory allocation code is generated, and the calling interface
used for generated model functions. In general, the Embedded-C code format
is more efficient than the RealTime code format. Embedded-C code format
provides more compact data structures, a simpler calling interface, and static
memory allocation. These characteristics make the Embedded-C code format
the preferred choice for production code generation.

3-2

Introduction

In prior releases, only the ERT target and targets derived from the ERT
target used the Embedded-C code format. Non-ERT targets used other code
formats (for example, RealTime or RealTimeMalloc).

In Release 14, the GRT target uses the Embedded-C code format for back end
code generation. This includes generation of both algorithmic model code
and supervisory timing and task scheduling code. The GRT target (and
derived targets) generates a RealTime code format wrapper around the
Embedded-C code. This wrapper provides a calling interface that is backward
compatible with existing GRT-based custom targets. The wrapper calls are
compatible with the main program module of the GRT target (grt _main.c

or grt_main.cpp). This use of wrapper calls incurs some calling overhead;
the pure Embedded-C calling interface generated by the ERT target is more
highly optimized.

For a description of the calling interface generated by the ERT target, see
“Data Structures and Program Execution” in the Real-Time Workshop
Embedded Coder documentation. The calling interface generated by the GRT
target is described in Chapter 7, “Program Architecture”.

Code format unification simplifies the conversion of GRT-based custom targets
to ERT-based targets. See “Making GRT-Based Targets ERT-Compatible” on
page 3-18 for a discussion of target conversion issues.

Backwards Compatibility of Code Formats

Because GRT targets now use Embedded-C code format, existing applications
that depend on the RealTime code format’s calling interface could have
compatibility issues. To address this, a set of macros is generated (in model .h)
that maps Embedded-C data structures to the identifiers that RealTime code
format used. The following, which can be found in any model . h file created for
a GRT target, describes these identifier mappings:

/* Backward compatible GRT Identifiers */

#define rtB model B

#define BlockIO BlockIO_model

#define rtXdot model Xdot

#define StateDerivatives StateDerivatives_model
#define tXdis model Xdis

#define StateDisabled StateDisabled_model

3-3

3 Generated Code Formats

#define rty model_Y

#define ExternalOutputs ExternalOutputs_model
#define rtP model P

#define Parameters Parameters_model

Since the GRT target now uses the Embedded-C code format for back end code
generation, many Embedded-C optimizations are available to all Real-Time
Workshop users. In general, the GRT and ERT targets now have many
more common features, but the ERT target offers additional controls for
common features. The availability of features is now determined by licensing,
rather than being tied to code format. The following table compares features
available with a Real-Time Workshop license with those available under a
Real-Time Workshop Embedded Coder license:

Comparison of Features Licensed with Real-Time Workshop Versus Real-Time Workshop

Embedded Coder

Real-Time Workshop

Feature Real-Time Workshop License Embedded Coder License
rtModel data Full rtModel structure generated. | rtModel is optimized for the
structure GRT variable declaration: model. Suppression of error

rtModel_model model M_;

status field, data logging fields,
and in the structure is optional.
ERT variable declaration:
RT_MODEL_model model M_;

Custom storage
classes (CSCs)

Code generation ignores CSCs;
objects are assigned a CSC default
to Auto storage class.

Code generation with CSCs is
supported.

HTML code
generation report

Basic HTML code generation
report

Enhanced report with additional
detail and hyperlinks to the model.

Symbol formatting

Symbols (for signals, parameters
and so on) are generated in
accordance with hard-coded
default.

Detailed control over generated
symbols.

3-4

Introduction

Comparison of Features Licensed with Real-Time Workshop Versus Real-Time Workshop
Embedded Coder (Continued)

Feature

Real-Time Workshop License

Real-Time Workshop
Embedded Coder License

User-defined
maximum identifier
length for generated
symbols

Supported

Supported

Generation of
terminate function

Always generated

Option to suppress terminate
function

Combined
output/update
function

Separate output/update functions
are generated.

Option to generate combined
output/update function

Optimized data
initialization

Not available

Options to suppress generation of

unnecessary initialization code for
zero-valued memory, I/O ports, and
S0 on

Comments generation

Basic options to include or suppress
comment generation

Options to include Simulink block
descriptions, Stateflow object
descriptions, and Simulink data
object descriptions in comments

Module Packaging
Features (MPF)

Not supported

Extensive code customization
features. See the Real-Time
Workshop Embedded Coder
documentation.

Target-optimized

Requires full tmwtypes.h header

Generates optimized rtwtypes.h

data types header file | file. header file, including only the
necessary definitions required by
the target.

User-defined types User-defined types default to base | User defined data type aliases are

types in code generation

supported in code generation.

Simplified call
interface

Non-ERT targets default to GRT
interface.

ERT and ERT-based targets
generate simplified interface.

Rate grouping

Not supported

Supported

3-5

3 Generated Code Formats

3-6

Comparison of Features Licensed with Real-Time Workshop Versus Real-Time Workshop
Embedded Coder (Continued)

Feature

Real-Time Workshop License

Real-Time Workshop
Embedded Coder License

Auto-generation of
main program module

Not supported; static main
program module is provided.

Automated and customizable
generation of main program
module is supported. Static main
program also available.

MAT-file logging No option to suppress MAT-file Option to suppress MAT-file
logging data structures logging data structures
Reusable Not supported Option to generate reusable code

(multi-instance) code
generation with static
memory allocation

Software constraint
options

Support for floating point, complex,
and nonfinite numbers is always
enabled.

Options to enable or disable
support for floating-point, complex,
and nonfinite number

Application life span

Defaults to inf

User-specified; determines most
efficient word size for integer
timers.

Software-in-the-loop
(SIL) testing

Model reference simulation target
can be used for SIL testing.

Additional SIL testing support by
using auto-generation of Simulink
S-Function block

ANSI-C/C++ code Supported Supported
generation
ISO-C/C++ code Supported Supported
generation
GNU-C/C++ code Supported Supported
generation
Generate scalar Not supported Supported

inlined parameters as
#DEFINE statements

Introduction

Comparison of Features Licensed with Real-Time Workshop Versus Real-Time Workshop
Embedded Coder (Continued)

Real-Time Workshop

Feature Real-Time Workshop License Embedded Coder License
MAT-file variable Supported Supported

name modifier

Data exchange: Supported Supported

C-API, external mode,

ASAP2

How Symbols Are Formatted in Generated Code
Real-Time Workshop constructs identifiers automatically for GRT targets.

The symbols that are so constructed include those for

® Signals and parameters that have Auto storage class

® Subsystem function names that are not user defined

e All Stateflow names

Prior to Release 14, you could exercise these options (on the Simulation
Parameters dialog box Code appearance pane) to format identifiers:

¢ Prefix model name to global identifiers

¢ Include System Hierarchy Number in Identifiers

¢ Include data type acronym in identifier

These options have been removed from the Real-Time Workshop GUI and
replaced by a default symbol formatting specification. The components of a
generated symbol are

® The root model name, followed by

* The name of the generating object (signal, parameter, state, and so on),
followed by

® A unique name mangling string (if required)

3-7

3 Generated Code Formats

3-8

The number of characters that any generated symbol can have is limited by
the Maximum identifier length parameter specified on the Symbols pane
of the Configuration Parameters dialog box. When there is a potential name
collision between two symbols, a name mangling string is generated. The
string has the minimum number of characters required to avoid the collision.
The other symbol components are then inserted. If the Maximum identifier
length parameter is not large enough to accommodate full expansions of
the other components, they are truncated. To avoid this outcome, it is good
practice to

® Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.

® Where possible, increase the Maximum identifier length to accommodate
the length of the symbols you expect to generate. The maximum length
you can specify is 256 characters.

Model Referencing Considerations. Within a model that uses model
referencing, there can be no collisions between the names of the constituent
models. When you generate code from a model that uses model referencing,
the Maximum identifier length parameter must be large enough to
accommodate the root model name and the name mangling string (if needed).
A code generation error occurs if Maximum identifier length is not large
enough.

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

The Real-Time Workshop Embedded Coder provides a Symbol format field
that lets you control the formatting of generated symbols in much greater
detail. See “Code Generation Options and Optimizations” in the Real-Time
Workshop Embedded Coder documentation for more information.

Choosing a Code Format for Your Application

Choosing a Code Format for Your Application

Your choice of code format is the most important code generation option.
The code format specifies the overall framework of the generated code and
determines its style.

When you choose a target, you implicitly choose a code format. Typically, the
system target file will specify the code format by assigning the TLC variable
CodeFormat. The following example is from ert.tlc.

%assign CodeFormat = "Embedded-C"

If the system target file does not assign CodeFormat, the default is RealTime
(asin grt.tlc).

If you are developing a custom target, you must consider which code format is
best for your application and assign CodeFormat accordingly.

Choose the RealTime or RealTime malloc code format for rapid prototyping.
If your application does not have significant restrictions in code size, memory
usage, or stack usage, you might want to continue using the generic real-time
(GRT) target throughout development.

For production deployment, and when your application demands that you

limit source code size, memory usage, or maintain a simple call structure, the
Embedded-C code format is appropriate. Consider using Real-Time Workshop
Embedded Coder, if you need added flexibility to configure and optimize code.

Finally, you should choose the Model Reference or the S-function formats if
you are not concerned about RAM and ROM usage and want to

e Use a model as a component, for scalability

® (Create a proprietary S-function DLL or MEX-file object

Interface the generated code using the S-function C API

® Speed up your simulation

3-9

3 Generated Code Formats

3-10

The following table summarizes how different targets support applications:

Application

Targets

Fixed- or variable-step

acceleration

RSIM, S-Function, Model Reference

Fixed-step real-time

deployment

GRT, GRT-Malloc, ERT, xPC, Tornado,
Real-Time Windows, TI-DSP, MPC555, ...

The following table summarizes the various options available for each
Real-Time Workshop code format/target, noting exceptions below.

Features Supported by Real-Time Workshop Targets and Code Formats

Feature

Real-
time

GRT | malloc

ERT

Tornado

RT Tl

S- Func | RSIM | Win| xPC | DSP | MPC555

Static memory
allocation

X

X X X X X

Dynamic
memory
allocation

X

Continuous
time

C/C++ MEX
S-functions
(noninlined)

S-function
(inlined)

Minimize
RAM/ROM
usage

Supports
external mode

Choosing a Code Format for Your Application

Features Supported by Real-Time Workshop Targets and Code Formats (Continued)

Feature

Real-
time RT TI
GRT | malloc| ERT | Tornado| S- Func | RSIM | Win| xPC | DSP | MPC555

Rapid
prototyping

X X X X X X

Production code

X X X X3

Batch
parameter
tuning and
Monte Carlo
methods

Executes in
hard real time

Xt |Xt! Xt |X X X X X2

Non real-time
executable
included

Multiple
instances of
model (no
Stateflow
blocks)

Supports
variable-step
solvers

IThe default GRT, GRT malloc, and ERT rt_main files emulate execution of
hard real time, and when explicitly connected to a real-time clock execute
in hard real time.

2Except MPC555 (processor-in-the-loop) and MPC555 (algorithm export)
targets

3Except MPC555 (algorithm export) targets

3-11

3 Generated Code Formats

3-12

Real-Time Code Format

The real-time code format (corresponding to the generic real-time target) is
useful for rapid prototyping applications. If you want to generate real-time
code while iterating model parameters rapidly, you should begin the design
process with the generic real-time target. The real-time code format supports
¢ Continuous time

® Continuous states

e C/C++ MEX S-functions (inlined and noninlined)

For more information on inlining S-functions, see Chapter 10, “Writing

S-Functions for Real-Time Workshop”, and the Target Language Compiler
documentation.

The real-time code format declares memory statically, that is, at compile time.

Unsupported Blocks

The real-time format does not support the following built-in user-defined
blocks:

e MATLAB Fcn (note that Simulink Fen blocks are supported)

¢ S-Function—M-file S-functions, Fortran S-functions, or C/C++ MEX
S-functions that call into MATLAB (Simulink Fcn calls are supported)

System Target Files

® grt.tlc —Generic real-time target
® rsim.tlc—Rapid simulation target

e tornado.tlc —Tornado (VxWorks) real-time target

Template Makefiles

®* grt
= grt_bc.tmf—Borland C

Real-Time Code Format

= grt_vc.tmf—Visual C

= grt _watc.tmf—Watcom C

= grt_lcc.tmf—Lcc compiler
= grt_unix.tmf —UNIX host
rsim

= rsim_bc.tmf—Borland C

= rsim_vc.tmf—Visual C

= rsim_watc.tmf—Watcom C
= rsim_lcc.tmf—Lcc compiler
= rsim_unix.tmf —UNIX host
tornado.tmf

win_watc.tmf

3-13

3 Generated Code Formats

Real-Time malloc Code Format

The real-time malloc code format (corresponding to the generic real-time
malloc target) is very similar to the real-time code format. The differences are

® Real-time malloc declares memory dynamically.

For blocks provided by The MathWorks, malloc calls are limited to the
model initialization code. Generated code is designed to be free from
memory leaks, provided that the model termination function is called.

e Real-time malloc allows you to deploy multiple instances of the same
model with each instance maintaining its own unique data.

e Real-time malloc allows you to combine multiple models together in
one executable. For example, to integrate two models into one larger
executable, real-time malloc maintains a unique instance of each of the
two models. If you do not use the real-time malloc format, the Real-Time
Workshop will not necessarily create uniquely named data structures for
each model, potentially resulting in name clashes.

grt_malloc_main.c (or .cpp), the main routine for the generic

real-time malloc (grt_malloc) target, supports one model by default.

See “Combining Multiple Models” on page 17-34 for information on
modifying grt_malloc_main.c (or .cpp) to support multiple models.

grt _malloc _main.c and grt malloc_main.cpp are located in the directory
matlabroot/rtw/c/grt_malloc.

Unsupported Blocks

The real-time malloc format does not support the following built-in blocks,
as shown:

® Functions & Tables
= MATLAB Fcn (note that Simulink Fen blocks are supported)

= S-Function—M-file S-functions, Fortran S-functions, or C/C++ MEX
S-functions that call into MATLAB (Simulink Fcn calls are supported)

3-14

Real-Time malloc Code Format

System Target Files

® grt_malloc.tlc

® tornado.tlc—Tornado (VxWorks) real-time target

Template Makefiles

® grt_malloc
= grt_malloc_bc.tmf—Borland C
= grt _malloc_vc.tmf—Visual C
= grt_malloc_watc.tmf—Watcom C
= grt_malloc_lcc.tmf —Lcc compiler
= grt_malloc_unix.tmf —UNIX host

® tornado.tmf

3-15

3 Generated Code Formats

S-Function C

ode Format

The S-function code format (corresponding to the S-function target) generates
code that conforms to the Simulink MEX S-function API. Using the S-function
target, you can build an S-function component and use it as an S-Function
block in another model.

The S-function code format is also used by the Simulink Accelerator to create
the Accelerator MEX-file.

In general, you should not use the S-function code format in a system target
file. However, you might need to do special handling in your inlined TLC files
to account for this format. You can check the TLC variable CodeFormat to see
if the current target is a MEX-file. If CodeFormat = "S-Function" and the
TLC variable Accelerator is set to 1, the target is a Simulink Accelerator
MEX-file.

See Chapter 11, “The S-Function Target”, for more information.

Embedded Code Format

3-16

The Embedded-C code format corresponds to the Real-Time Workshop
Embedded Coder target (ERT), and targets derived from ERT. This code
format includes a number of memory-saving and performance optimizations.
See the Real-Time Workshop Embedded Coder documentation for details.

Using the Real-Time Model Data Structure

The Embedded C format uses the real-time model (RT_MODEL) data
structure. This structure is also referred to as the rtModel data structure.
You can access rtModel data by using a set of macros analogous to the Macros
ssSetxxx and ssGetxxx macros that S-functions use to access SimStruct
data, including noninlined S-functions compiled by Real-Time Workshop, and
are documented in the Simulink Writing S-Functions documentation.

You need to use the set of macros rtmGetxxx and rtmSetxxx to access the
real-time model data structure, which is specific to Real-Time Workshop. The
rtModel is an optimized data structure that replaces SimStruct as the top

Embedded Code Format

level data structure for a model. The rtmGetxxx and rtmSetxxx macros are
used in the generated code as well as from the main.c or main.cpp module. If
you are customizing main.c or main.cpp (either a static file or a generated
file), you need to use rtmGetxxx and rtmSetxxx instead of the ssSetxxx and
ssGetxxx macros.

Usage of rtmGetxxx and rtmSetxxx macros is the same as for the ssSetxxx
and ssGetxxx versions, except that you replace SimStruct S by real-time
model data structure rtM. The following table lists rtmGetxxx and rtmSetxxx
macros that are used in grt_main.c, grt_main.cpp, grt_malloc_main.c,
and grt_malloc_main.cpp.

Macros for Accessing the Real-Time Model Data Structure

rtm Macro Syntax Description

rtmGetdX(rtm) Get the derivatives of a block’s continuous
states

rtmGetOffsetTimePtr (RT_MDL ritM) Return the pointer of vector that store all
sample time offset of the model associated
with rtM

rtmGetNumSampleTimes (RT_MDL rtM) Get the number of sample times that a block
has

rtmGetPerTaskSampleHitsPtr (RT_MDL) Return a pointer of NumSampleTime x
NumSampleTime matrix

rtmGetRTWExtModeInfo (RT_MDL rtM) Return an external mode information data

structure of the model. This data structure is
used internally for external mode.

rtmGetRTWLogInfo (RT_MDL) Return a data structure used by Real-Time
Workshop logging. Internal use.

rtmGetRTWRTModelMethodsInfo (RT_MDL) Return a data structure of Real-Time Workshop
real-time model methods information. Internal
use.

rtmGetRTWSolverInfo (RT_MDL) Return data structure containing solver

information of the model. Internal use.

rtmGetSampleHitPtr (RT_MDL) Return a pointer of Sample Hit flag vector

3-17

3 Generated Code Formats

3-18

Macros for Accessing the Real-Time Model Data Structure (Continued)

rtm Macro Syntax

Description

rtmGetSampleTime (RT_MDL rtM, int TID)

Get a task’s sample time

rtmGetSampleTimePtr (RT_MDL rtMm)

Get pointer to a task’s sample time

rtmGetSampleTimeTaskIDPtr (RT_MDL rtM)

Get pointer to a task’s ID

rtmGetSimTimeStep (RT_MDL)

Return simulation step type ID
(MINOR_TIME_ STEP, MAJOR_TIME_ STEP)

rtmGetStepSize (RT_MDL)

Return the fundamental step size of the model

rtmGetT (RT_MDL,t)

Get the current simulation time

rtmSetT (RT_MDL,t)

Set the time of the next sample hit

rtmGetTaskTime (RT_MDL,tid)

Get the current time for the current task

rtmGetTFinal (RT_MDL)

Get the simulation stop time

rtmSetTFinal (RT_MDL,finalT)

Set the simulation stop time

rtmGetTimingData (RT_MDL)

Return a data structure used by timing engine
of the model. Internal use.

rtmGetTPtr (RT_MDL)

Return a pointer of the current time

rtmGetTStart (RT_MDL)

Get the simulation start time

rtmIsContinuousTask (rtm)

Determine whether a task is continuous

rtmIsMajorTimeStep (rtm)

Determine whether the simulation is in a
major step

rtmIsSampleHit (RT_MDL,tid)

Determine whether the sample time is hit

For additional details on usage, see “SimStruct Functions — Alphabetical
List” in the Simulink Writing S-Functions documentation.

Making GRT-Based Targets ERT-Compatible

If you have developed a GRT-based custom target, it is simple to make
your target ERT compatible. By doing so, you can take advantage of many

efficiencies.

Embedded Code Format

There are several approaches to ERT compatibility:

If your installation is not licensed for Real-Time Workshop Embedded
Coder, you can convert a GRT-based target as described in “Converting
Your Target to Use rtModel” on page 3-19. This enables your custom target
to support all current GRT features, including back end Embedded-C code
generation.

You can create an ERT-based target, but continue to use your customized
version of the grt _main.c or grt_main.cpp module. To do this, you can
configure the ERT target to generate a GRT-compatible calling interface,
as described in “Generating GRT Wrapper Code from the ERT target” on
page 3-21. This lets your target support the full ERT feature set, without
changing your GRT-based run-time interface. This approach requires that
your installation be licensed for Real-Time Workshop Embedded Coder.

If your installation is licensed for Real-Time Workshop Embedded Coder,
you can reimplement your custom target as a completely ERT-based target,
including use of an ERT generated main program. This approach lets your
target support the full ERT feature set, without the overhead caused by
wrapper calls.

Note If you intend to use custom storage classes (CSCs) with a custom
target, you must use an ERT-based target. See “Custom Storage Classes”
in the Real-Time Workshop Embedded Coder documentation for detailed
information on CSCs.

For details on how GRT targets are made call-compatible with previous
versions of Real-Time Workshop, see “The Real-Time Model Data Structure”
on page 7-31.

Converting Your Target to Use rtModel

The real-time model data structure (rtModel) encapsulates model-specific
information in a much more compact form than the SimStruct. Many
ERT-related efficiencies depend on generation of rtModel rather than
SimStruct, including

Integer absolute and elapsed timing services

3-19

3 Generated Code Formats

3-20

® Independent timers for asynchronous tasks

® Generation of improved C-API code for signal and parameter monitoring
® Pruning the data structure to minimize its size (ERT-derived targets only)
To take advantage of such efficiencies, you must update your GRT-based
target to use the rtModel (unless you already did so for Release 13). The

conversion requires changes to your system target file, template makefile,
and main program module.

The following changes to the system target file and template makefile are
required to use rtModel instead of SimStruct:

¢ In the system target file, add the following global variable assignment:

%assign GenRTModel = TLC_TRUE

¢ In the template makefile, define the symbol USE_RTMODEL. See one of the
GRT template makefiles for an example.

The following changes to your main program module (that is, your customized
version of grt_main.c or grt_main.cpp) are required to use rtModel instead
of SimStruct:

® Include rtmodel.h instead of simstruc.h.

® Since the rtModel data structure has a type that includes the model name,
define the following macros at the top of the main program file:

#define EXPAND_CONCAT (nameil,name2) namel ## name2
#define CONCAT (namei,name2) EXPAND_CONCAT (name1,name2)
#define RT_MODEL CONCAT (MODEL, rtModel)

® Change the extern declaration for the function that creates and initializes
the SimStruct to

extern RT_MODEL *MODEL(void);

¢ Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 14 version
of grt_main.c.

Embedded Code Format

® Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

® The prototypes for the functions rt_GetNextSampleHit,
rt_UpdateDiscreteTaskSampleHits, rt_UpdateContinuousStates,
rt_UpdateDiscreteEvents, rt _UpdateDiscreteTaskTime, and
rt_InitTimingEngine have changed. Change their names to use the prefix
rt_Siminstead of rt_ and then change the arguments you pass in to them.

See the Release 14 version of grt_main.c for the list of arguments passed
in to each function.

® Modify all macros that refer to the SimStruct to now refer to the rtModel.
SimStruct macros begin with the prefix ss, whereas rtModel macros
begin with the prefix rtm. For example, change ssGetErrorStatus to
rtmGetErrorStatus.

Generating GRT Wrapper Code from the ERT target

The Real-Time Workshop Embedded Coder supports the GRT compatible
call interface option. When this option is selected, the Real-Time Workshop
Embedded Coder generates model function calls that are compatible with the
main program module of the GRT target (grt_main.c or grt_main.cpp).
These calls act as wrappers that interface to ERT (Embedded-C format)
generated code.

This option provides a quick way to use ERT target features with a GRT-based
custom target that has a main program module based on grt_main.c or
grt_main.cpp.

See the “Code Generation Options and Optimizations” in the Real-Time

Workshop Embedded Coder documentation for detailed information on the
GRT compatible call interface option.

3-21

3 Generated Code Formats

3-22

Building Subsystems and
Working with Referenced
Models

Nonvirtual Subsystem Code
Generation (p. 4-2)

Generating Code and Executables
from Subsystems (p. 4-16)

Generating Code from Models
Containing Model Blocks (p. 4-19)

Sharing Utility Functions (p. 4-48)

Supporting Shared Utility
Directories in the Build Process
(p. 4-54)

Discusses ways to generate separate
code modules from nonvirtual
subsystems

Describes how to generate and build
a standalone executable from a
subsystem

Explains how referenced models can
be incorporated into generated code

Explains how to use the shared
utility feature to modularize
generated code.

Discusses changes you need to make
to a template make file to support
the shared utilities directory

4 Building Subsystems and Working with Referenced Models

4-2

Nonvirtual Subsystem Code Generation

Real-Time Workshop allows you to control how code is generated for any
nonvirtual subsystem. The categories of nonvirtual subsystems are:

® Conditionally executed subsystems: execution depends upon a control
signal or control block. These include triggered subsystems, enabled
subsystems, action and iterator subsystems, subsystems that are both
triggered and enabled, and function call subsystems. See “Creating
Conditionally Executed Subsystems” in the Simulink documentation for
more information.

® Atomic subsystems: Any virtual subsystem can be declared atomic (and
therefore nonvirtual) by using the Treat as atomic unit option in the
Block Parameters dialog box.

Note You should declare virtual subsystems as atomic subsystems to ensure
consistent simulation and execution behavior for your model. If you generate
code for a virtual subsytem, Real-Time Workshop treats the subsystem as
atomic and generates the code accordingly. The resulting code can change the
execution behavior of your model, for example, by applying algebraic loops,
and introduce inconsistencies with the simulation behavior.

See “Systems and Subsystems” in the Simulink documentation, and run the
sl subsys_semantics demo for more information on nonvirtual subsystems
and atomic subsystems.

You can control the code generated from nonvirtual subsystems as follows:

® You can instruct Real-Time Workshop to generate separate functions,
within separate code files if desired, for selected nonvirtual systems. You
can control both the names of the functions and of the code files generated
from nonvirtual subsystems.

® You can cause multiple instances of a subsystem to generate reusable code,
that is, as a single reentrant function, instead of replicating the code for
each instance of a subsystem or each time it is called.

Nonvirtual Subsystem Code Generation

® You can generate inlined code from selected nonvirtual subsystems within
your model. When you inline a nonvirtual subsystem, a separate function
call is not generated for the subsystem.

Nonvirtual Subsystem Code Generation Options

For any nonvirtual subsystem, you can choose the following code generation
options from the RTW system code menu in the subsystem Block parameters
dialog box:

® Auto: This is the default option, and provides the greatest flexibility in
most situations. See “Auto Option” on page 4-3 below.

e Inline: This option explicitly directs Real-Time Workshop to inline the
subsystem unconditionally.

® Function: This option explicitly directs Real-Time Workshop to generate
a separate function with no arguments, and (optionally), place the
subsystem in a separate file. You can name the generated function and
file. As functions created with this option rely on global data, they are
not reentrant.

® Reusable function: Generates a function with arguments that allows the
subsystem’s code to be shared by other instances of it in the model. To
enable sharing, Real-Time Workshop must be able to determine (by using
checksums) that subsystems are identical. The generated function will
have arguments for block inputs and outputs (rtB_*), continuous states
(rtDW_*), parameters (rtP_*), and so on.

Note You should not directly call reusable functions generated by
Real-Time Workshop. The call interface is subject to change.

The following sections discuss these options further.

Auto Option

The Auto option is the default, and is generally appropriate. Auto causes
Real-Time Workshop to inline the subsystem when there is only one instance
of it in the model. When multiple instances of a subsystem exist, the Auto
option results in a single copy of the function whenever possible (as a reusable

4-3

4 Building Subsystems and Working with Referenced Models

4-4

function). Otherwise, the result is as though you selected Inline (except

for function call subsystems with multiple callers, which is handled as if
you specified Function). Choose Inline to always inline subsystem code, or
Function when you specifically want to generate a separate function without
arguments for each instance, optionally in a separate file.

Note When you want multiple instances of a subsystem to be represented
as one reusable function, you can designate each one of them as Auto or as
Reusable function. It is best to use one or the other, as using both creates
two reusable functions, one for each designation. The outcomes of these
choices differ only when reuse is not possible.

To use the Auto option,

1 Select the subsystem block. Then select Subsystem parameters from the
Simulink Edit menu. The Block Parameters dialog box opens, as shown
below.

Alternatively, you can open the Block Parameters dialog box by
e Shift+double-clicking the subsystem block

® Right-clicking the subsystem block and selecting Block parameters
from the menu

2 If the subsystem is virtual, select Treat as atomic unit as shown in the
dialog box below. This makes the subsystem nonvirtual, and the RTW
system code option becomes enabled.

If the system is already nonvirtual, the RTW system code option is
already enabled.

3 Select Auto from the RTW system code menu as shown below.
4 Click Apply and close the dialog box.

The border of the subsystem thickens, indicating that it is nonvirtual.

Nonvirtual Subsystem Code Generation

[=Block Parameters: AtomicSubsys1 i 2xl

—Subspstem

Select the zettings for the subsystem block.

=
F

V' Show port labels

Fead/\write permissions: I Feadw/rite LI
Mame of emar callback function:

Permit hierarchical resolution: I Al LI

¥ Treat a atomic urit
[~ Minimize algebraic loop occurences
Sample time [-1 for inherited]:

|1

RT'w spstem code: I Auto

RTw function name options: I Uze subsystem name

RT'w file name options: I Auto

L L 1

Ok | Lancel

Apply |

Nonvirtual Subsystem Code Generation with Auto Option Selected

Auto Optimization for Special Cases. Rather than reverting to Inline,
the Auto option can optimize code in special situations in which identical
subsystems contain other identical subsystems, by both reusing and inlining
generated code. Suppose a model, such as schematized in Reuse of Identical
Nested Subsystems with the Auto Option on page 4-6, contains identical
subsystems Al and A2. Al contains subsystem B1, and A2 contains
subsystem B2, which are themselves identical. In such cases, the Auto option
causes one function to be generated which is called for both A1 and A2, and
this function contains one piece of inlined code to execute B1 and B2, ensuring
that the resulting code will run as efficiently as possible.

4-5

4 Building Subsystems and Working with Referenced Models

4-6

Speciol Cose Optimization:
When B1=B2 und A1=A2, selecting the Auto
option inlines cotle for B within code for function A

Al

Q—h—b B1
O—»

——-) B2

AZ

Reuse of Identical Nested Subsystems with the Auto Option

Inline Option

As noted above, you can choose to inline subsystem code when the subsystem
is nonvirtual (virtual subsystems are always inlined).

Exceptions to Inlining. There are certain cases in which Real-Time
Workshop does not inline a nonvirtual subsystem, even though the Inline
option is selected. These cases are

e Ifthe subsystem is a function-call subsystem that is called by a noninlined
S-function, the Inline option is ignored. Noninlined S-functions make such
calls by using function pointers; therefore the function-call subsystem must
generate a function with all arguments present.

¢ In a feedback loop involving function-call subsystems, Real-Time Workshop
forces one of the subsystems to be generated as a function instead of
inlining it. Real-Time Workshop selects the subsystem to be generated as a
function based on the order in which the subsystems are sorted internally.

e If a subsystem is called from an S-Function block that sets the option
SS_OPTION_FORCE_NONINLINED_ FCNCALL to TRUE, it is not inlined. This
might be the case when user-defined Asynchronous Interrupt blocks
or Task Synchronization blocks are required. Such blocks must be
generated as functions. The VxWorks Asynchronous Interrupt and Task

Nonvirtual Subsystem Code Generation

Synchronization blocks, shipped with Real-Time Workshop, use the
SS_OPTION_FORCE_NONINLINED FCNCALL option.

To generate inlined subsystem code,

1 Select the subsystem block. Then select Subsystem parameters from the
Simulink Edit menu. The Block Parameters dialog box opens, as shown in
Inlined Code Generation for a Nonvirtual Subsystem on page 4-8.

Alternatively, you can open the Block Parameters dialog box by
e Shift+double-clicking the subsystem block
® Right-clicking the subsystem block and selecting Block parameters

from the menu

2 If the subsystem is virtual, select Treat as atomic unit as shown in
Inlined Code Generation for a Nonvirtual Subsystem on page 4-8. This
makes the subsystem atomic, and the RTW system code menu becomes
enabled.

If the system is already nonvirtual, the RTW system code menu is
already enabled.

3 Select Inline from the RTW system code menu as shown in Inlined Code
Generation for a Nonvirtual Subsystem on page 4-8.

4 Click Apply and close the dialog box.

4 Building Subsystems and Working with Referenced Models

4-8

[Z]Block Parameters: Atomicsubsysl 21l

—Subspstem

Select the zeftings for the subsystem block.

=
F

V' Show port labels
FeadAwiite permissions: I Readwiite LI

Mame of emar callback function:

Permit hierarchical rezolution: I All LI

¥ Treat a atomic urit
[~ Minimize algebraic loop occurences
Sample time [-1 for inherited]:

|1

RT'w spstem code: I Inline

RTw function name options: I Uze subsystem name

L L 1

RT'w file name options: I Auto

ok | LCancel |

Apply |

Inlined Code Generation for a Nonvirtual Subsystem

When you generate code from your model, Real-Time Workshop writes inline
code within model.c or model.cpp (or in its parent system’s source file) to
perform subsystem computations. You can identify this code by system/block
identification tags, such as the following.

/* Atomic SubSystem Block: <Root>/AtomicSubsysi */

See “Tracing Generated Code Back to Your Simulink Model” on page 2-124 for
more information on system/block identification tags.

Function Option

Choosing the Function option or Reusable function lets you direct
Real-Time Workshop to generate a separate function and optionally a separate

file for the subsystem. When you select the Function option, two additional
options are enabled:

¢ The RTW function name options menu lets you control the naming
of the generated function.

Nonvirtual Subsystem Code Generation

¢ The RTW file name options menu lets you control the naming of the
generated file (if a separate file is generated and you select the User
specified option).

Subsystem Function Code Generation with Separate User-Defined Filename
on page 4-9 shows the Block Parameters dialog box with the Function option
selected.

C1Block Parameters: AtomicSubsysi 21l

—Subspstem

Select the zeftings for the subsystem block.

=
F

V' Show port labels

FeadAwiite permissions: I Readwiite LI
Mame of emar callback function:

Permit hierarchical rezolution: I All LI

¥ Treat a atomic urit

[~ Minimize algebraic loop occurences
Sample time [-1 for inherited]:

|1

RT'w spstem code: I Function

RTw function name options: I Auto

Ll L Lo

RT'w file name options: I User specified

R T file name [no extension]:

IA-S eparate_File

Ok I Lancel | Help | Apply |

Subsystem Function Code Generation with Separate User-Defined Filename

RTW Function Name Options Menu. This menu offers the following
choices, but the resulting identifiers are also affected by which General code
appearance options are in effect for the model:

* Auto: By default, Real-Time Workshop assigns a unique function name
using the default naming convention: model subsystem(), where
subsystem is the name of the subsystem (or that of an identical one when
code is being reused).

® Use subsystem name: Real-Time Workshop uses the subsystem name as
the function name.

4 Building Subsystems and Working with Referenced Models

4-10

Note When a subsystem is a library block, the Use subsystem name option
causes its function identifier (and filename, see below) to be that of the
library block, regardless of the names used for that subsystem in the model.

User specified: When this option is selected, the RTW function name
field is enabled. Enter any legal C or C++ function name (which must be
unique).

RTW Filename Options Menu. This menu offers the following choices:

® Use subsystem name: Real-Time Workshop generates a separate file, using

the subsystem (or library block) name as the filename.

Note When a subsystem’s RTW file name options is set to Use
subsystem name, the subsystem filename is mangled if the model contains
Model blocks, or if a model reference target is being generated for the
model. In these situations, the filename for the subsystem consists of the
subsystem name prefixed by the model name.

Use function name: Real-Time Workshop generates a separate file, using
the function name (as specified by the RTW function name options) as
the filename.

User specified: When this option is selected, the RTW file name (no
extension) text entry field is enabled. Real-Time Workshop generates

a separate file, using the name you enter as the filename. Enter any
filename, but do not include the .c or .cpp (or any other) extension. This
filename need not be unique.

Note While a subsystem source filename need not be unique, you must
avoid giving nonunique names that result in cyclic dependencies (for
example, sys_a.h includes sys_b.h, sys b.h includes sys c.h, and
sys_c.h includes sys_a.h).

Nonvirtual Subsystem Code Generation

Auto: Real-Time Workshop does not generate a separate file for the
subsystem. Code generated from the subsystem is generated within

the code module generated from the subsystem’s parent system. If the
subsystem’s parent is the model itself, code generated from the subsystem
is generated within model.c or model.cpp.

To generate both a separate subsystem function and a separate file,

Select the subsystem block. Then select Subsystem parameters from the
Simulink Edit menu, to open the Block Parameters dialog box.
Alternatively, you can open the Block Parameters dialog box by

e Shift+double-clicking the subsystem block

® Right-clicking the subsystem block and selecting Block parameters

from the menu.

If the subsystem is virtual, select Treat as atomic unit. The RTW
system code menu becomes enabled.

If the system is already nonvirtual, the RTW system code menu is
already enabled.

Select Function from the RTW system code menu as shown in
Subsystem Function Code Generation with Separate User-Defined
Filename on page 4-9.

Set the function name, using the RTW function name options described
in “RTW Function Name Options Menu” on page 4-9.

Set the filename, using any RTW file name option other than Auto
(options are described in “RTW Filename Options Menu” on page 4-10).

Subsystem Function Code Generation with Separate User-Defined
Filename on page 4-9 shows the use of the UserSpecified filename option.

6 Click Apply and close the dialog box.

4-11

4 Building Subsystems and Working with Referenced Models

4-12

Reusable Function Option

The difference between functions and reusable functions is that the latter
have data passed to them as arguments (enabling them to be reentrant),
while the former communicate by using global data. Choosing the Reusable
function option directs Real-Time Workshop to generate a single function
(optionally in a separate file) for the subsystem, and to call that code for each
identical subsystem in the model, if possible.

Note The Reusable function option yields code that is called from multiple
sites (hence reused) only when the Auto option would also do so. The
difference between these options’ behavior is that when reuse is not possible,
selecting Auto yields inlined code (or if circumstances prohibit inlining,
creates a function without arguments), while choosing Reusable function
yields a separate function (with arguments) that is called from only one site.

For a summary of code reuse limitations, see “Code Reuse Limitations” on
page 4-14.

Generating Reusable Code from Stateflow Charts. You can generate
reusable code from a Stateflow chart, or from a subsystem containing a
Stateflow chart, except in the following cases:

¢ The Stateflow chart contains exported graphical functions.

® The Stateflow model contains machine parented events.

Generating Reusable Code for Subsystems Containing S-Function
Blocks. Regarding S-Function blocks, there are several requirements that
need to be met in order for subsystems containing them to be reused. See
“Writing S-Functions That Support Code Reuse ” on page 10-67 for the list
of requirements.

When you select the Reusable function option, two additional options are
enabled. See the explanation of “Function Option” on page 4-8 for descriptions
of these options and fields. If you enter names in these fields, you must specify
exactly the same function name and filename for each instance of identical
subsystems for Real-Time Workshop to be able to reuse the subsystem code.

Nonvirtual Subsystem Code Generation

CBlock Parameters: Atomicsubsys l 2%l
—Subspstem

Select the zettings for the subsystem block.

FeadAwiite permissions: I Readwiite LI

Mame of emar callback function:

Permit hierarchical resalution: I All LI

¥ Treat s atomic urit
™ Minimize algebraic loop occurrences

Sample time [-1 for inherited]:

|1

RT% spstem code: I Reuzable function LI
RTW function name options: I Usze subsystem name LI
RT%w file name options: I Auto LI

Ok I LCancel | Help | Apply |

Subsystem Reusable Function Code Generation Option
To request that Real-Time Workshop generate reusable subsystem code,

1 Select the subsystem block. Then select Subsystem parameters from the
Simulink Edit menu. The Block Parameters dialog box opens, as shown in
Inlined Code Generation for a Nonvirtual Subsystem on page 4-8.

Alternatively, you can open the Block Parameters dialog box by:
e Shift+double-clicking the subsystem block

® Right-clicking the subsystem block and selecting Block parameters
from the menu.

2 If the subsystem is virtual, select Treat as atomic unit. The RTW
system code menu becomes enabled.

If the system is already nonvirtual, the RTW system code menu is
already enabled.

3 Select Reusable function from the RTW system code menu as shown in
Subsystem Reusable Function Code Generation Option on page 4-13.

4-13

4 Building Subsystems and Working with Referenced Models

4-14

4 If you want to give the function a specific name, set the function name,
using the RTW function name options described in “RTW Function Name
Options Menu” on page 4-9.

If you do not choose the RTW function name Auto option, and want code
to be reused, you must assign exactly the same function name to all other
subsystem blocks that you want to share this code.

5 If you want to direct the generated code to a specific file, set the filename
using any RTW file name option other than Auto (options are described in
“RTW Filename Options Menu” on page 4-10).

In order for code to be reused, you must repeat this step for all other
subsystem blocks that you want to share this code, using the same filename.

6 Click Apply and close the dialog box.

Modularity of Subsystem Code

Code generated from nonvirtual subsystems, when written to separate files, is
not completely independent of the generating model. For example, subsystem
code may reference global data structures of the model. Each subsystem code
file contains appropriate include directives and comments explaining the
dependencies. Real-Time Workshop checks for cyclic file dependencies and
warns about them at build time. For descriptions of how generated code is
packaged, see “Generated Source Files and File Dependencies” on page 2-84.

Code Reuse Limitations
Real-Time Workshop uses a checksum to determine whether subsystems are

identical. You cannot reuse subsystem code if:
® Multiple ports of a subsystem share the same source.

e A port used by multiple instances of a subsystem has different sample
times, data types, complexity, frame status, or dimensions across the
instances.

® The output of a subsystem is marked as a global signal.

® Subsystems contain identical blocks with different names or parameter
settings.

Nonvirtual Subsystem Code Generation

Some of these situations can arise even when subsystems are copied and
pasted within or between models or are manually constructed to be identical.
If you select Reusable function and Real-Time Workshop determines that
code for a subsystem cannot be reused, it generates a separate function that is
not reused. The code generation report can show that the separate function
is reusable, even if it is used by only one subsystem. If you prefer that
subsystem code be inlined in such circumstances rather than deployed as
functions, you should choose Auto for the RTW system code option.

The presence of certain blocks in a subsystem can also prevent its code from
being reused. These are

® Scope blocks (with data logging enabled)

® S-Function blocks that fail to meet certain criteria
® To File blocks (with data logging enabled)

® To Workspace blocks (with data logging enabled)

Code Reuse Diagnostics

HTML code generation reports (see “Generate HTML Report” on page

2-61) contain a Subsystems link in their Contents section to a table that
summarizes how nonvirtual subsystems were converted to generated code.
The Subsystems section contains diagnostic information that helps to explain
why the contents of some subsystems were not generated as reusable code.
In addition to diagnosing exceptions, the HTML report’s Subsystems section
also indicates the mapping of each noninlined subsystem in the model to
functions or reused functions in the generated code. For an example, open
and build the rtwdemo_atomic demo model.

4-15

4 Building Subsystems and Working with Referenced Models

4-16

Generating Code and Executables from Subsystems

Real-Time Workshop can generate code and build an executable from any
subsystem within a model. The code generation and build process uses the
code generation and build parameters of the root model.

To generate code and build an executable from a subsystem,

1 Set up the desired code generation and build parameters in the
Configuration Parameters dialog box, just as you would for code generation
from a model.

2 Select the desired subsystem block.

3 Right-click the subsystem block and select Build Subsystem from the
Real-Time Workshop submenu of the subsystem block’s context menu.

Note When you right-click build a subsystem that includes an Outport
block for which the signal specification Specify properties via bus
object is selected, Real Time Workshop requires that you set the Signal
label mismatch option on the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box for the parent model to error. You
need to address any errors that occur by properly setting signal labels.

Alternatively, you can select Build Subsystem from the Real-Time
Workshop submenu of the Tools menu. This menu item is enabled when
a subsystem is selected in the current model.

Note If the model is operating in external mode when you select Build
Subsystem, Real-Time Workshop automatically turns off external mode for
the duration of the build, then restores external mode upon its completion.

Generating Code and Executables from Subsystems

4 The Build Subsystem window opens. This window displays a list of the
subsystem parameters. The upper pane displays the name, class, and
storage class of each variable (or data object) that is referenced as a block
parameter in the subsystem. When you select a parameter in the upper
pane, the lower pane shows all the blocks that reference the parameter and
the parent system of each such block.

The StorageClass column contains a popup menu for each row. The menu
lets you set the storage class of any parameter or inline the parameter. To
inline a parameter, select the Inline option from the menu. To declare

a parameter to be tunable, set the storage class to any value other than
Inline.

<) Build code for Subsystem: Gain IH[=] B3
r Pick tunable parameter
Variable Mame Class StorageClass
@ K1 ASAPZ Parameter | SimulinkGlabal] =
G K2 Simulink Parameter | INlined |
SimulinkGlabal w | |
4 double ExportedGlobal =
| | |
rBlocks using selected variable: K3
Block Farent
0 Gain2 gainiGain
Build Cancel Help |
Status
’7 Select tunahle parameters and click Build ‘

In the illustration above, the parameter K2 is inlined, while the other
parameters are tunable and have various storage classes.

See “Parameters: Storage, Interfacing, and Tuning” on page 5-2 and
“Simulink Data Objects and Code Generation” on page 5-43 for more
information on tunable and inlined parameters and storage classes.

5 After selecting tunable parameters, click the Build button. This initiates
the code generation and build process.

4-17

4 Building Subsystems and Working with Referenced Models

6 The build process displays status messages in the MATLAB Command
Window. When the build completes, the generated executable is in your
working directory. The name of the generated executable is subsystem.exe
(PC) or subsystem (UNIX), where subsystem is the name of the source
subsystem block.

The generated code is in a build subdirectory, named

subsystem _target rtw, where subsystem is the name of the
source subsystem block and target is the name of the target configuration.

4-18

Generating Code from Models Containing Model Blocks

Generating Code from Models Containing Model Blocks

“About Model Reference” on page 4-19

“Using Referenced Models” on page 4-22

“Project Directory Structure for Model Reference Targets” on page 4-30
“Inherited Sample Time for Referenced Models” on page 4-35

“Reusable Code and Referenced Models” on page 4-38

“Making Custom Targets Compatible with Model Reference” on page 4-41
“Model Referencing Limitations” on page 4-46

About Model Reference

A model that includes Model blocks always has at least a top model and might
have one or more referenced models. You can think of the top model as the
root Model block. It refers to other Model blocks (referenced models), which in
turn can refer to yet other Model blocks. However, Model blocks cannot refer
back to a referring model in the model reference hierarchy, as indicated in
the following figure.

Top model

Model A

Referenced models - \

Mode| B %DD

Model referencing uses incremental loading; when you open a top model,
models to which it refers are not loaded into memory until they are needed
or you open them explicitly.

4-19

4 Building Subsystems and Working with Referenced Models

4-20

Note To take advantage of incremental model loading, you must save models
called from Model blocks at least once with the current version of Simulink.

When running simulations, models include other models by generating code
for them in a project directory (see below) and creating a static library file
called a simulation target (sometimes referred to as a SIM target, which is not
the same as the RSim rapid simulation target). When Real-Time Workshop
generates code for referenced models, it follows a parallel process to create
whatever type of target (for example, GRT) you have specified; these are
generically referred to as Real-Time Workshop targets. The generated code is
also stored in the project directory, although generated code for parent models
is stored (as previously) in a build directory at the same level as the model
reference project directory.

In addition to incremental loading, the model referencing mechanism employs
incremental code generation. This is accomplished by comparing the date, and
optionally, the structure of model files of referenced models with those for
their generated code to determine whether it is necessary to regenerate model
reference targets. You can also force or prevent code generation by using a
diagnostic setting, Rebuild options, in the Model Referencing pane of the
Configuration Parameters dialog box.

Model Reference Demos and Tutorial

You can learn more about how to use Model blocks by working through the
model reference tutorial “Generating Code for a Referenced Model” and
running available demos. To access the demos from the Help browser, click
Demos > Simulink > Modeling Features. The following demos under
Modeling Features demonstrate the use of model referencing:

¢ Component-Based Modeling with Model Reference —
sldemo_mdlref_basic

¢ Visualizing Model Reference Architectures — sldemo _mdlref depgraph

® Interface Specification Using Bus Objects — sldemo _mdlref bus

¢ Parameterizing Model Reference — sldemo _mdlref paramargs

® Converting Subsystems to Model Reference — sldemo_mdlref_dsm

Generating Code from Models Containing Model Blocks

® Model Reference Function-Call — sldemo_mdlref_fcncall

In addition, the demo Demos > Simulink > Automotive

Applications > Anti-Lock Brake System (sldemo_absbrake) represents a
wheel speed calculation as a Model block within the context of an anti-lock
braking system (ABS).

Generating Code for Models with Model Blocks

When a model includes one or more other models, Simulink generates code for
the referenced models and uses it to build shared library files for updating
the diagram and simulation. This happens automatically, as described below.
Code for building Real-Time Workshop applications is generated when you
initiate a code generation build.

Note You cannot build models that contain Model blocks using the Real-Time
Workshop S-function target. This also means that you cannot build a
subsystem module by right-clicking (or by using Tools > Real-Time
Workshop > Build subsystem) if the subsystem contains Model blocks. This
restriction applies only to Real-Time Workshop S-functions, not to Real-Time
Workshop Embedded Coder S-functions.

If you only want to generate code for referenced models without generating
code for the top model, in the MATLAB Command Window type:

slbuild('model', 'ModelReferenceRTWTarget')
Code for referenced models is generated into the slprj directory.

Model reference executables for simulations are required when you generate
code in Real-Time Workshop. Model reference files for simulation are rebuilt
(if necessary) when you run a simulation or update the diagram. Whether
these files are rebuilt depends on how your model has changed and on your
Rebuild options setting on the Model Reference pane of the configuration
dialog. You can update a model reference simulation target by typing

slbuild('model', 'ModelReferenceSimTarget')

4-21

4 Building Subsystems and Working with Referenced Models

4-22

Note When using the model reference feature, the language of the code
generated for the top model and any referenced models must match. For
example, if you generate C++ code for the top model, the generated code for all
referenced models must also be C++ code.

For more information on building model reference simulation targets, see
“Referencing Models” in the Simulink documentation.

Project Directories

When models referenced by using Model blocks are built for simulation or
Real-Time Workshop code generation, files are placed in a project directory
named slprj within the current working directory. The subdirectories in
slprj provide separate places for simulation code, Real-Time Workshop
code, and other files.

Using Referenced Models

To include one model in another (called the top model), you insert it as a
Model block, and configure it using a set of controls in the dialog for the
Model Referencing configuration component. You can access the controls
by using Model Explorer or by using standalone dialog boxes. For details on
using the Model Referencing dialog box, see “Model Referencing Pane” in
the Simulink documentation.

Parameterizing Referenced Models

In addition to the controls on the Model Referencing dialog box described
“Using Referenced Models” on page 4-22, you can also specify parameters to
be passed to a referenced model when it is called. See “Parameterizing Model
References” in the Simulink documentation for more information.

MAT-File Logging for Model Reference Targets

Top-level models can perform data logging whether they reference models or
not. Generated code for referenced models, on the other hand, does not log
data to MAT-files regardless of Real-Time Workshop target you use. If you set
up a referenced model to log data to a MAT-file, Real-Time Workshop disables
the option during code generation and restores it when the build completes.

Generating Code from Models Containing Model Blocks

Model Reference Diagnostics

The Model Referencing pane of the Diagnostics portion of the
Configuration Parameters dialog box provides important controls that can
help you configure Model blocks. See “Diagnostics Pane” in the Simulink
documentation for details.

Possible Incompatibilities Between Top and Referenced Models
A model and its referenced models can have differences in option settings that
conflict when Real-Time Workshop generates code. Some incompatibilities
can be ignored or handled as warnings using diagnostic settings. Other
incompatibilities always result in errors during code generation, and must be
remedied by changing settings in either top models or referenced models. The
following table lists Real-Time Workshop configuration parameter options
that can conflict if set in certain ways or if set differently in a referenced
model than in a top-level model. Some of these conditions only apply to ERT
and ERT-derived targets.

Dialog Box Pane Option Remarks

Optimization Inline parameters May be on or off for
top-level models. Must
be on for referenced
models.

Hardware All Must be the same
Implementation for top and referenced
models (code generation
only)

Real-Time Workshop | System target file Must be the same for
top and referenced
models

Real-Time Workshop | Generate code only Must be the same for
top and referenced

models
Real-Time Workshop | Ignore custom (ERT-derived targets
storage classes only) Must be the same
for top and referenced
models

4-23

4 Building Subsystems and Working with Referenced Models

Dialog Box Pane

Option

Remarks

Symbols Maximum identifier | Can be longer for top
length model than referenced
models
Symbols #define naming (ERT-derived targets
only) Must be the same
for top and referenced
models
Symbols Parameter naming (ERT-derived targets
only) Must be the same
for top and referenced
models
Symbols Signal naming (ERT-derived targets
only) Must be the same
for top and referenced
models
Interface Target floating-point | Must be the same
math environment library for top and
referenced models
Interface Support floating- (ERT-derived targets
point numbers only) If off for top
model, must be off for
referenced models
Interface Support complex (ERT-derived targets
numbers only) If off for top
model, must also be off
for referenced models
Interface Support nonfinite (ERT-derived targets
numbers only) If off for top
model, must also be off
for referenced models
Optimization Application lifespan | Must be the same for

(days)

top and referenced
models

4-24

Generating Code from Models Containing Model Blocks

Dialog Box Pane

Option

Remarks

Interface Terminate function (ERT-derived targets
required only) Must be the same
for top and referenced
models
Interface Suppress error (ERT-derived targets
status in real-time only) If on for top
model model, must also be on
for referenced models
Interface Data Exchange Signals and Parameters
Interface: C-API check boxes must be in
same states for top and
referenced models
Interface Data Exchange Must be the same for
Interface: ASAP2 top and referenced
models
Templates Target operating (ERT-derived targets

system

only) Must be the same
for top and referenced
models

Data Placement

MPT Module Naming

(ERT-derived targets
only) Must be the same
for top and referenced
models

Data Placement MPT Module Name (ERT-derived targets
only) Must be the same
for top and referenced
models

Data Placement MPT Source of initial | (ERT-derived targets

values only) Must be the same

for top and referenced
models

4-25

4 Building Subsystems and Working with Referenced Models

Dialog Box Pane Option Remarks

Data Placement Signal display level (ERT-derived targets
only) Must be the same
for top and referenced
models

Data Placement Parameter tune level | (ERT-derived targets
only) Must be the same
for top and referenced
models

In addition, be aware of the following conditions:

® Solver—Only one solver is used for all models.

= When a referenced model uses a different solver from the top model, its
solver setting is ignored and the top model’s solver is used.

= If the top model uses a fixed-step solver, and a referenced model has any
continuous states, issue a diagnostic if solvers differ.

¢ Data Import/Export—The Load initial state option must be off when
building a target for a referenced model; it can be on for the top model.

Note Custom targets should declare themselves to be model reference
compliant if they need to support Model blocks. For details on
accomplishing this, see “Making Custom Targets Compatible with Model
Reference” on page 4-41.

Storage Classes for Signals Used with Model Blocks

Models containing Model blocks can use signals of storage class Auto without
restriction. However, when you declare signals to be global, be aware of how
the signal data will be handled.

4-26

Generating Code from Models Containing Model Blocks

A global signal is a signal with a storage class other than Auto:

® ExportedGlobal
® ImportedExtern
® ImportedExternPointer

® Custom

The above are distinct from SimulinkGlobal signals, which are treated as
test points with Auto storage class.

Global signals are declared, defined, and used as follows:

® An extern declaration is generated by all models that use any given global
signal.

As a result, if a signal crosses a Model block boundary, the top model and
the referenced model both generate extern declarations for the signal.

* For any exported signal, the topmost model that uses the signal is
responsible for defining (allocating memory for) the signal.

Therefore if a signal crosses a model’s boundary, that model is not
responsible for defining the signal. Instead, the parent model will generate
the definition.

o All global signals used by a referenced model are accessed directly (as
global memory). They are not passed as arguments to the functions that
are generated for the referenced models.

Custom storage classes also follow the above rules. However, certain custom
storage classes are not currently supported for use with model reference. See
the Real-Time Workshop Embedded Coder documentation for details.

Effects of Signal Name Mismatches. Within a parent model, the name
and storage class for a signal entering or leaving a Model block might not
match those of the signal attached to the root inport or outport within that
referenced model. Because referenced models are compiled independently
without regard to any parent model, they cannot adapt to all possible
variations in how parent models label and store signals.

4-27

4 Building Subsystems and Working with Referenced Models

Real-Time Workshop is forgiving in all cases where input and output signals
in a referenced model have Auto storage class. When such signals are test
pointed or are global, as described above, certain restrictions apply. The
following table describes how mismatches in signal labels and storage classes
between parent and referenced models are handled:

Relationships of Signals and Storage Classes Between Parent and
Referenced Models

Signal
Referenced Signal Passing | Mismatch
Model Parent Model | Method Checking
Auto Any Function None

argument
SimulinkGlobal | Any Function Label Mismatch
or resolved tp argument Diagnostic (none
Signal Object / warning / error)
Global Auto or Global variable Label Mismatch
SimulinkGlobal Diagnostic (none

/ warning / error)

Global Global Global variable Labels and

storage classes
must be identical
(else error)

To summarize, the following signal resolution rules apply to code generation:

e Ifthe storage class of a root input or output signal in a referenced model is
Auto (or is SimulinkGlobal), the signal is passed as a function argument.

= Furthermore, when such a signal is SimulinkGlobal or resolves to a
Simulink.Signal object, the Signal Mismatch diagnostic is applied.

e If a root input or output signal in a referenced model is global, it is
communicated by using direct memory access (global variable). In addition,

= If the corresponding signal in the parent model is also global, the names
and storage classes must match exactly.

Generating Code from Models Containing Model Blocks

= If the corresponding signal in the parent model is not global, the Signal
Mismatch diagnostic is applied.

You can set the Signal Mismatch diagnostic to error, warning, or none in
the Diagnostics pane of the Configuration Parameters dialog box.

Storage Classes for Parameters Used with Model Blocks

Note the following limitations regarding handling of parameters for
referenced models:

¢ Inline parameters off is supported for top-level models but not for
referenced models.

® Tunable parameters are not supported for noninlined S-functions.

® Tunable parameters set using the Model Parameter Configuration dialog

box are ignored.

The above rules apply to the built-in storage classes and custom storage
classes alike. You should also read “Parameterizing Model References” in
the Simulink documentation for more information on how you can control
parameter passing to referenced models.

All storage classes are supported for both simulation and code generation, and
all are tunable except for Auto. The supported storage classes thus include

® SimulinkGlobal

ExportedGlobal
® ImportedExtern
® ImportedExternPointer

® Custom
Some key considerations to remember:

® Note the following considerations concerning how global tunable
parameters are declared, defined, and used in code generated for targets:

= A global tunable parameter is a parameter in the base workspace with
a storage class other than Auto.

4-29

4 Building Subsystems and Working with Referenced Models

4-30

= An extern declaration is generated by all models that use any given
parameter.

= If a parameter is exported, the top model is responsible for defining
(allocating memory for) the parameter (whether it uses the parameter
or not).

= All global parameters are accessed directly (as global memory). They
are not passed as arguments to any of the functions that are generated
for any of the referenced models.

= Symbols for SimulinkGlobal parameters in referenced models are
generated using unstructured variables (rtP_xxx) instead of being
written into the model P (formerly rtP) structure. This is so that each
referenced mode can be compiled independently.

* Asin the case of signals, certain custom storage classes for parameters are
not currently supported for model reference. See the Real-Time Workshop
Embedded Coder documentation for details.

® Parameters used as Model block arguments must be defined in the
referenced model’s workspace. See “Parameterizing Model References” in
the Simulink documentation for specific details.

Project Directory Structure for Model Reference
Targets

Code for models referenced by using Model blocks is generated in project
directories within the current working directory. The top-level project
directory is always named /slprj. The next level within slprj contains
parallel build area subdirectories, /target, where target is sim for
simulation targets and grt, ert, and so on for Real-Time Workshop targets.

The following table lists principal project directories and files. In the paths
listed, model is the name of the model being used as a referenced model,
and target is the Real-Time Workshop target acronym (for example, grt,
ert, rsim, and so on).

Generating Code from Models Containing Model Blocks

Directories and Files
slprj/sim/model/

slprj/sim/model/tmwinternal
slprj/target/model
slprj/target/model/tmwinternal
slprj/sl proj.tmw (marker file)

slprj/target/_sharedutils

slprj/sim/_sharedutils

Description
Model reference simulation target files

MAT-files used during code generation of model
reference simulation target and accelerator

Model reference Real-Time Workshop target files

MAT-files used during code generation of model
reference Real-Time Workshop target and
stand-alone code generation

slprj marker file

Utility functions for Real-Time Workshop targets,
shared across models

Utility functions for simulation targets, shared
across models

If you are building code for more than one referenced model within the same
working directory, model reference files for all such models are added to the
existing slprj directory. For example, below is a directory listing for a project
containing two referenced models, that are configured for the ERT target:

/slprj

+---/grt

+ | /_sharedutils

| | | checksummap.mat

| | | rt_nonfinite.c

| | | rt_nonfinite.h

| | | rt_nonfinite.obj

| | | rtw_shared utils.h
| | | rtwshared.lib

| | | rtwtypes.h

+ | /mdlref basic:

+ | | /tmwinternal:

| (project housekeeping, not for user)
+ | /mdlref_counter:
o

4-31

4 Building Subsystems and Working with Referenced Models

| contents_file.tmp

| mdlref counter_c.html

| mdlref_counter_codegen_rpt.html
| mdlref_counter_contents.html

| mdlref_counter_h.html

| mdlref counter private h.html

| mdlref_counter_subsystems.html
| mdlref counter_survey.html

| mdlref counter types h.html

mdlref_counter.bat
mdlref_counter.c
mdlref_counter.h
mdlref_counter.mk
mdlref_counter.obj
mdlref_counter_private.h
mdlref_counter_rtwlib.1lib
mdlref_counter_types.h
modelsources.txt
rtw_proj.tmw
/tmwinternal

(project housekeeping, not for user)

+---/sim:

+ | /_sharedutils

| | | checksummap.mat

| | | rt_nonfinite.c

| | | rt_nonfinite.h

| | | rt_nonfinite.obj

| | | rtw_shared utils.h
| | | rtwshared.lib

| | | rtwtypes.h

+ | /mdlref _basic:

+ | | tmwinternal

| (project housekeeping, not for user)
+ | /mdlref_counter:

+ | | /html

| | | | contents _file.tmp

4-32

Generating Code from Models Containing Model Blocks

_— -

mdlref_counter_c.html
mdlref_counter_capi_c.html
mdlref_counter_capi_h.html
mdlref_counter_codegen_rpt.html
mdlref_counter_contents.html
mdlref_counter_h.html
mdlref_counter_msf_c.html
mdlref_counter_private h.html
mdlref_counter_subsystems.html
mdlref_counter_survey.html
mdlref_counter_types h.html

mdlref_counter.bat
mdlref_counter.c
mdlref_counter.h
mdlref_counter.mk
mdlref_counter.obj
mdlref_counter_capi.c
mdlref_counter_capi.h
mdlref_counter_capi.obj
mdlref_counter_msf.c
mdlref_counter_private.h
mdlref_counter_types.h
mdlref_counterlib.lib
modelsources.txt
rtw_proj.tmw
/tmwinternal

(project housekeeping, not for user)

Makefile Requirements

The makefile used by Real-Time Workshop must support compiling and
creating libraries, and so on, from the locations in which the code is generated.
Therefore, you need to update your makefile and the model reference build
process to support the shared utilities location. For details on the changes
required for a makefile, see “Supporting Shared Utility Directories in the
Build Process” on page 4-54 and “Template Makefile Modifications” on page

4-42.

4-33

4 Building Subsystems and Working with Referenced Models

4-34

In terms of makefile support, the Utility function generation options have
the following requirements:
® Auto

= Standalone model build—All files go to the build directory; no makefile
updates needed.

= Referenced model or top model build—Use shared utilities directory;
makefile requires full model reference support.

® Shared location

= Standalone model build—Use shared utility directory; makefile requires
shared location support.

= Referenced model or top model build—Use shared utilities directory;
makefile requires full model reference support.

Customization Notes

e Customizing the file type extension for generated model reference libraries

You can control the file type extension Real-Time Workshop uses for
generated model reference libraries by specifying the string for the
extension with the model configuration parameter TargetLibSuffix. If
you do not set this parameter,

On a... Real-Time Workshop Names the Libraries...
Windows system model rtwlib.lib
UNIX system model rtwlib.a

® Checking for shared utilities
Use the M-file rtw_gen_shared utils.

matlabroot/toolbox/rtw/rtw/rtw_gen _shared utils (model)

rtw_gen_shared_utils returns 1 if the build will be using shared utilities,
and 0 otherwise. This indicates whether generated code for utilities

is written to the slprj shared utilities directory or to the model build
directory, respectively. The shared utilities directory is used when the

Generating Code from Models Containing Model Blocks

current model is included by using a Model block in another model or
when generating code when the current model is the top model and itself
contains Model blocks.

You can call rtw_gen_shared _utils only after PrepareBuildArgs has
been called (that is, you can invoke it only after reaching the before_tlc
stage when processing target_make rtw_hook.m).

The following TLC variables are also available:
= GenUtilsSrcInSharedLocation—1 if utilities will be shared, 0 otherwise

= GenUtilsPath—Full path to the location for utility functions

Inherited Sample Time for Referenced Models

It is sometimes desirable for a Model block to inherit a sample time. Without
this ability, a Model block cannot be placed in a triggered subsystem (or
function call, or iterator). Additionally, allowing a Model block to inherit
sample time in a variety of contexts maximizes its reuse potential. For
example, a model might fix the data types and dimensions of all its input and
output signals, but could be reused with different sample times, for example,
discrete at 0.1, discrete at 0.2, triggered, and so on. If the blocks it contains
meet certain requirements, there is no reason why such a model cannot
inherit any discrete sample time when used as a Model block.

Enabling Model Blocks to Inherit Sample Time

If you want a Model block to be used in a model where it can inherit a sample
time, you must constrain the solver declared for that model. On the Solver
configuration pane, set solver Type to Fixed-step and Periodic sample
time constraint to Ensure sample time independent. When Simulink
generates Model block code for that model, it halts with an error if this model
is unable to inherit sample times.

A model is only allowed to inherit a sample time if and only if all the following
conditions are true:

® None of its blocks specifies sample times (other than inherited and
constant).

® No fixed step size has been specified for the solver by the user.

4-35

4 Building Subsystems and Working with Referenced Models

4-36

® After sample time propagation, there is only one sample time in the model
(not counting constant sample time).

® No S-functions make use of their specific sample time internally.

Inherited Sample Time Examples

You can preclude inheriting sample time or not by using
ssSetModelReferenceSampleTimeInheritanceRule in different ways:

® An S-function that precludes inheritance: If the sample time is used
in the S-function’s run-time algorithm, then the S-function precludes a
model from inheriting a sample time. For example, consider the following
md1Outputs code:

static void mdlOutputs(SimStruct *S, int T tid)

{
const real T *u = (const real T¥*)
ssGetInputPortSignal(S,0);
real T *y = ssGetOutputPortSignal(S,0);
y[0] = ssGetSampleTime(S,tid) * u[0];

}

This md10utputs code uses the sample time in its algorithm, and the
S-function therefore should specify

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW SAMPLE TIME_INHERITANCE);

® An S-function that does not preclude Inheritance: If the sample time is
only used for determining whether the S-function has a sample hit, then it
does not preclude the model from inheriting a sample time. For example,
consider the md10utputs code from the S-function demo sfun_multirate.c:

static void mdlOutputs(SimStruct *S, int T tid)

{
InputRealPtrsType enablePtrs;

int *enabled = ssGetIWork(S);

if (ssGetInputPortSampleTime
(S,ENABLE_IPORT)==CONTINUOUS SAMPLE_TIME &&

Generating Code from Models Containing Model Blocks

ssGetInputPortOffsetTime (S,ENABLE_IPORT)==0.0) {
if (ssIsMajorTimeStep(S) &&
ssIsContinuousTask(S,tid)) {
enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);
}
} else {
int enableTid =
ssGetInputPortSampleTimeIndex(S,ENABLE_IPORT);
if (ssIsSampleHit(S, enableTid, tid)) {
enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}

if (*enabled) {
InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,SIGNAL_IPORT);
real T signal = *uPtrs[0];
int ij

for (i = 0; i < NOUTPUTS; i++) {
if (ssIsSampleHit (S,
ssGetOutputPortSampleTimeIndex(S,1i), tid)) {
real T *y = ssGetOutputPortRealSignal(S,i);
*y = signal;

}

}
} /* end mdlOutputs */

The above code uses the sample times of the block, but only for determining
whether there is a hit. Therefore, this S-function should set

ssSetModelReferenceSampleTimeInheritanceRule
(S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE) ;

4-37

4 Building Subsystems and Working with Referenced Models

4-38

Reusable Code and Referenced Models

Models that employ model referencing might require special treatment when
generating and using reusable code. The following sections identify general
restrictions and discuss how reusable functions with inputs or outputs
connected to a referenced model’s root Inport or Outport blocks can affect
code reuse.

General Considerations
You can generate code for subsystems that contain referenced models using
the same procedures and options described in “Nonvirtual Subsystem Code

Generation” on page 4-2. However, the following restrictions apply to such
builds:

e ERT S-functions do not support subsystems that contain a continuous
sample time.
® The Real-Time Workshop S-function target is not supported.

® The Tunable parameters table (set by using the Model Parameter
Configuration dialog box) is ignored; to make parameters tunable, you must
define them as Simulink parameter objects in the base workspace.

o All other parameters are inlined into the generated code and S-function.

Note You can generate subsystem code using any target configuration
available in the System Target File Browser. However, if the S-function
target is selected, Build Subsystem behaves identically to Generate
S-function. (See “Automated S-Function Generation” on page 11-14.)

Code Reuse and Model Blocks with Root Inport or Outport
Blocks

Reusable functions with inputs or outputs connected to a referenced model’s
root Inport or Outport block can affect code reuse. This means that code for

certain atomic subsystems cannot be reused in a model reference context the
same way it is reused in a standalone model.

Generating Code from Models Containing Model Blocks

For example, suppose you create the following subsystem and make the
following changes to the subsystem’s block parameters:

e Select Treat as an atomic unit

e Set RTW system code to reusable function

T4 w0
In4

. Outi
3in

Suppose you then create the following model, which includes three instances
of the preceding subsystem.

n1 outl b—pf it ot 01 ot

In Ot

Subsystemn 1 Subsystem 2 Subsystem 32

With the Inline parameters option enabled in this stand-alone model,

Real-Time Workshop can optimize the code by generating a single copy of the
function for the reused subsystem, as shown below.

void reuse_subsys1_Subsystem1(
real T rtu_O,
rtB_reuse_subsys1_Subsystemi1 *localB)

/* Gain: '<81>/Gain' */
localB->Gain_k = rtu_0 * 3.0;
}

4-39

4 Building Subsystems and Working with Referenced Models

4-40

When generated as code for a Model block (into an slprj project directory),
the subsystems have three different function signatures:

/* Output and update for atomic system: '<Root>/Subsystemi' */
void reuse_subsys1_Subsystemi(const real T *rtu_O,
rtB_reuse_subsys1_Subsystemi

*localB)

{

/* Gain: '<S1>/Gain' */
localB->Gain_w = (*rtu_0) * 3.0;
}

/* Output and update for atomic system: '<Root>/Subsystem2' */
void reuse_subsys1_Subsystem2(real T rtu_Int,
rtB_reuse_subsys1_Subsystem2

*localB)

{

/* Gain: '<S2>/Gain' */
localB->Gain_y = rtu_In1 * 3.0;
}

/* Output and update for atomic system: '<Root>/Subsystem3' */
void reuse_subsys1_Subsystem3(real T rtu_In1, real T *rty_O0)
{
/* Gain: '<S83>/Gain' */
(*rty_0) = rtu_Int1 * 3.0;
}

One way to make all the function signatures the same—and therefore assure
code reuse—is to insert Signal Conversion blocks. Place one between the
Inport and Subsystem1 and another between Subsystem3 and the Outport
of the referenced model, as follows:

ﬂ In1 Ot ——] Int Ot —pe] In1 Outt ﬂ

Cutl

Signal Signal
Conversipn - -Peystem? Subsystemz Subsystem3 oo e siond

Generating Code from Models Containing Model Blocks

The result is a single reusable function:

void reuse_subsys2 Subsystemi(real T rtu_Int,
rtB_reuse_subsys2 Subsystemi1 *localB)

{

/* Gain: '<S1>/Gain' */
localB->Gain_g = rtu_In1 * 3.0;
}

You can achieve the same result (reusable code) with only one Signal
Conversion block. You can omit the Signal Conversion block connected to the
Inport block if you select the Pass scalar root inputs by value check box at
the bottom of the Model Referencing pane of the Configuration Parameters
dialog box. When you do this, you still need to insert a Signal Conversion
block before the Outport block.

Making Custom Targets Compatible with Model
Reference

Models that employ model referencing might require special treatment when
generating code for custom targets. The following sections describe how to
adapt your custom target for code generation compatibility with the model
reference features. Most of the guidelines pertain to modifications you need to
make to your system target file (STF) and template makefile (TMF).

General Considerations

® A model reference compatible target must be derived from the ERT or
GRT targets.

® When generating code from a model that references another model, both
the top-level model and the referenced models must be configured for the
same code generation target.

4-41

4 Building Subsystems and Working with Referenced Models

4-42

¢ The External mode option is not supported in model reference Real-Time
Workshop target builds. If the user has selected this option, it is ignored
during code generation.

® To support model reference builds, your TMF must support use of the
shared utilities directory, as described in “Supporting Shared Utility
Directories in the Build Process” on page 4-54.

System Target File Modifications

Your STF must implement a SelectCallback function (see “SelectCallback
Function for System Target Files” on page 4-45). Your SelectCallback
function must declare model reference compatibility by setting the
ModelReferenceCompliant flag.

The callback is executed if the function is installed in the SelectCallback
field of the rtwgensettings structure in your STF. The following code installs
the SelectCallback function:

rtwgensettings.SelectCallback =
['custom_open_callback_handler(hDlg, hSrc)'];

Your callback should set the ModelReferenceCompliant flag as follows.

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant', 'on');

Template Makefile Modifications

In addition to the TMF modifications described in “Supporting Shared Utility
Directories in the Build Process” on page 4-54, you must modify your TMF
variables and rules as described below.

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

MODELREFS = |>MODELREFS<|

MODELLIB = |>MODELLIB<|

MODELREF_LINK_LIBS = |>MODELREF_LINK_LIBS<|
MODELREF_INC_PATH = |>START_MDLREFINC_EXPAND_ INCLUDES<|\
-1|>MODELREF_INC_PATH<| |>END_MDLREFINC_EXPAND_ INCLUDES<|
RELATIVE_PATH _TO_ANCHOR = |>RELATIVE_PATH_TO_ANCHOR<|

Generating Code from Models Containing Model Blocks

MODELREF_TARGET_TYPE = |>MODELREF_TARGET TYPE<|

The following code excerpts show how makefile tokens are expanded for a
referenced model, and for the top-level model that references it.

MODELREFS =
MODELLIB
MODELREF_LINK_LIBS
MODELREF_INC_PATH =
RELATIVE_PATH_TO_ANCHOR
MODELREF_TARGET_TYPE

engine3200cc_rtwlib.a

Y A
RTW

Example of how tokens are expanded for the top-level model

MODELREFS = engine3200cc transmission
MODELLIB = archlib.a

MODELREF_LINK LIBS = engine3200cc_rtwlib.a\
transmission_rtwlib.a

MODELREF_INC_PATH = -I../slprj/ert/engine3200cc\

-I../slprj/ert/transmission
RELATIVE_PATH_TO_ANCHOR = ..
MODELREF_TARGET_TYPE = NONE

The MODELREFS token for the top-level model expands to a list of referenced
model names.

The MODELLIB token expands to the name of the library generated for the
model.

The MODELREF_LINK_LIBS token for the top-level model expands to a list of
referenced model libraries that the top-level model links against.

The MODELREF_LINK_LIBS token for the top-level model expands to the
include path to the referenced models.

The RELATIVE_PATH_TO_ANCHOR token expands to the relative path, from
the location of the generated makefile, to the MATLAB working directory.

4-43

4 Building Subsystems and Working with Referenced Models

The MODELREF_TARGET_TYPE token signifies the type of target being built.
Possible values are

® NONE: Standalone model or top-level model referencing other models
® RTW: Model reference Real-Time Workshop target build

® SIM: Model reference simulation target build

2 Add RELATIVE_PATH_TO_ANCHOR and MODELREF_INC_PATH include paths
to the overall INCLUDES variable.

INCLUDES= -I. -I$(RELATIVE_PATH_TO ANCHOR) $(MATLAB_INCLUDES)\
$(ADD_INCLUDES) $(USER_INCLUDES) $(MODELREF_INC_PATH)\
$ (SHARED_INCLUDES)

3 Change the SRCS variable in your TMF so that it initially lists only common
modules. Modules are then be appended conditionally, as described in step
4 below. For example, change

SRCS = $(MODEL).c $(MODULES) ert main.c $(ADD_SRCS) $(EXT_SRC)

to

SRCS

$(MODULES) $(S_FUNCTIONS)

4 Create variables to define the final target of the makefile. You can remove
any variables that might have existed for defining the final target. For
example, remove

PROGRAM = ../$(MODEL)

and replace it with

ifeq ($(MODELREF_TARGET_TYPE), NONE)
Top-level model for RTW

PRODUCT = $(RELATIVE_PATH_TO ANCHOR)/$ (MODEL)
BIN SETTING = $(LD) $(LDFLAGS) -0 $(PRODUCT) \
$(SYSLIBS)

BUILD PRODUCT_TYPE = "executable"

ERT based targets

SRCS += $(MODEL).c ert_main.c $(EXT_SRC)
GRT based targets

4-44

Generating Code from Models Containing Model Blocks

SRCS += $(MODEL).c grt_main.c rt_sim.c \
$(EXT_SRC) $(SOLVER)

else
sub-model for RTW
PRODUCT = $(MODELLIB)
BUILD PRODUCT_TYPE = "library"
endif

5 Create rules for final target of makefile (replace any existing final target
rule). For example,

ifeq ($(MODELREF_TARGET_TYPE),NONE)
Top-level model for RTW
$(PRODUCT) : $(OBJS) $(SHARED OBJS) $(MODELREF_LINK LIBS)
$(LIBS) $(BIN_SETTING) $(LINK OBJS) $(SHARED OBJS)
$ (MODELREF_LINK LIBS) $(LIBS)
@echo "### Created $(BUILD_PRODUCT_TYPE): $@ "
else
sub-model for RTW
$(PRODUCT) : $(OBJS) $(SHARED O0BJS)
@rm -f $(MODELLIB)
$(AR) ruv $(MODELLIB) $(LINK_OBJS)
@echo "### $(MODELLIB) Created"
@echo "### Created $(BUILD_PRODUCT_TYPE): %@ "
endif

6 Create a rule to allow submodels to compile files that reside in the MATLAB
working directory (pwd).

o°

.0 : $(RELATIVE_PATH_TO ANCHOR)/%.cC
$(CC) -c $(CFLAGS) $<

SelectCallback Function for System Target Files

The API for system target file callbacks provides a function SelectCallback
for use in system target files. SelectCallback is associated with the
target rather than with any of its individual options. If you implement a
SelectCallback function for the target, it is triggered once when the user
selects the target by using the System Target File Browser.

4-45

4 Building Subsystems and Working with Referenced Models

4-46

To implement this callback, use the SelectCallback field of the
rtwgensettings structure. The following code installs a SelectCallback
function:

rtwgensettings.SelectCallback =
['custom_open_callback_handler(hDlg, hSrc)'];

The arguments to the SelectCallback function (hD1lg, hSrc) are handles to
private data used by the callback API functions. These handles are restricted
to use in system target file callback functions. They should be passed in
without alteration, as in this example:

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant', 'on');

If you have developed a custom target and you want it to be compatible
with model referencing, you must implement a SelectCallback function
to declare model reference compatibility. See “Making Custom Targets
Compatible with Model Reference” on page 4-41 for an example.

Model Referencing Limitations

This section summarizes major limitations on the use of model referencing
with some features of Real-Time Workshop and products based on Real-Time
Workshop. For example, models must meet certain conditions to reference
other models or be referenced by other models. See “Model Referencing
Limitations” in the Simulink Release Notes for a more complete list of model
reference limitations.

The following limitations are specific to code generation:

® When using the model reference feature, the language of the code generated
for the top model and any referenced models must match. For example,
if you generate C++ code for the top model, the generated code for all
referenced models must also be C++ code.

® When using the data logging feature, note that

= To Workspace and Scope blocks in models referenced by a top model do
not log data when you run code generated from the top model.

= A top model can perform data logging to MAT-files whether or not it
refers to other models. However, code generated for referenced models

Generating Code from Models Containing Model Blocks

does not log data to MAT-files regardless of the target specified. If data
logging is enable for a referenced model, Real-Time Workshop disables
the option during code generation and reenables it after the build is
complete.

The S-function target and GRT malloc target do not support model
referencing.

You cannot build a subsystem module by right-clicking a subsystem if the
subsystem contains Model blocks unless the model is configured to use
an ERT target.

Real-Time Workshop cannot generate stand-alone executables for models
that refer to models that include noninlined S-functions.

A referenced model cannot use noninlined S-functions generated by
Real-Time Workshop.

Configuration parameters of a top model and its reference models must
meet specific conditions. For details, see “Possible Incompatibilities
Between Top and Referenced Models” on page 4-23 in the Real-Time
Workshop documentation.

You must clear the Load initial state option on the Data Import/Export
pane of the Configuration Parameters dialog box when building a target for
a referenced model. However, you can select this option for the top model.

If you generate code for a model’s atomic subsystems as reusable functions,
the functions can have inputs or outputs connected to a referenced model’s
root Inport or Outport blocks, however, they can affect code reuse. For
details, see “Reusable Code and Referenced Models” on page 4-38 in the
Real-Time Workshop documentation.

If you have developed a custom target and you want it to be compatible
with model referencing, you must implement a SelectCallback function to
declare model reference compatibility. See “Supporting Model Referencing”
in the Real-Time Workshop Embedded Coder documentation.

4-47

4 Building Subsystems and Working with Referenced Models

4-48

Sharing Utility Functions

Blocks in a model can require common functionality to implement their
algorithm. In many cases, it is most efficient to modularize this functionality
into standalone support or helper functions, rather than inlining the code for
the functionally for each block instance.

Typically, functions that can have multiple callers are packaged into a library.
Traditionally, such functions are defined statically, that is, the function source
code exists in a file before you use Real-Time Workshop to generate code for
your model. This is the case, for example, with the Real-Time Workshop
directory 1libsrc, which contains many statically defined functions.

In other cases, several model- and block-specific properties can affect which
functions are needed and their behavior. Additionally, these properties can
affect type definitions (for example, typedef) in shared utility header files.
Since there are many possible combinations of properties that determine
unique behavior, it is not practical to statically define all possible function
files before code generation. Instead, you can use the Real-Time Workshop
shared utility mechanism, which generates any needed support functions
during code generation process.

For more information, see:

® “Controlling Shared Utility Generation” on page 4-48

* “rtwtypes.h and Shared Utilities” on page 4-49

® “Incremental Shared Utility Generation and Compilation” on page 4-50
e “Shared Utility Checksum” on page 4-50

e “Shared Fixed-Point Utilities” on page 4-52

Controlling Shared Utility Generation

You control the shared utility generation mechanism with the Utility
function generation option on the Real-Time Workshop > Interface
pane of the Configuration Parameters dialog box. By default, the option is set
to Auto. For this setting, if the model being built does not include any Model
blocks, Real-Time Workshop places any code required for fixed-point and
other utilities in one of the following:

Sharing Utility Functions

® The model.c or model.cpp file

¢ In a separate file in the Real-Time Workshop build directory (for example,
vdp_grt_rtw)

Thus, the code is specific to the model.

If a model does contain Model blocks, Real-Time Workshop creates and uses a
shared utilities directory within slprj. Model reference builds require the
use of shared utilities. The naming convention for shared utility directories
is slprj/target/ _sharedutils, where target is sim for simulations with
Model blocks or the name of the system target file for Real-Time Workshop
target builds. Some examples follow:

o°

directory used with simulation
slprj/grt/_sharedutils directory used with grt.tlc STF
slprj/ert/_sharedutils directory used with ert.tlc STF
slprj/mytarget/ _sharedutils % directory used with mytarget.tlc STF

slprj/sim/_sharedutils

o°

o°

To force a model build to use the slprj directory for shared utility generation,
even when the current model contains no Model blocks, set the Utility
function generation option to Shared location. This forces Real-Time
Workshop to place utilities under the slprj directory rather than in the
normal Real-Time Workshop build directory. This setting is useful when you
are manually combining code from several models, as it prevents symbol
collisions between the models.

rtwtypes.h and Shared Utilities

The generated header file rtwtypes.h provides necessary defines,
enumerations, and so on. The location of this file is controlled by whether
the build process is using the shared utilities directory. Typically,
Real-Time Workshop places rtwtypes.h in the standard build directory,
model target rtw. However, if a shared directory is required, Real-Time
Workshop places rtwtypes.h in slprj/target/ _sharedutils.

4-49

4 Building Subsystems and Working with Referenced Models

4-50

Incremental Shared Utility Generation and
Compilation

As explained in “Controlling Shared Utility Generation” on page 4-48, you can
specify that C source files, which contain function definitions, and header files,
which contain macro definitions, be generated in a shared utilities directory.
For the purpose of this discussion, the term functions means functions and
macros.

A shared function can be used by blocks within the same model and by blocks
in different models when using model reference or when building multiple
standalone models from the same start build directory. However, Real-Time
Workshop generates the code for a given function only once for the block that
first triggers code generation. As Real-Time Workshop determines the need
to generate function code for subsequent blocks, it performs a file existence
check. If the file exists, the function is not regenerated. Thus, the shared
utility function mechanism requires that a given function and filename
represent the same functional behavior regardless of which block or model
generates the function. To satisfy this requirement:

® Model properties that affect function behavior are included in a shared
utility checksum or affect the function and file name.

® Block properties that affect the function behavior also affect the function
and file name.

During compilation, makefile rules for the shared utilities directory are
configured to compile only new C files, and incrementally archive the object
file into the shared utility library, rtwshared.lib or rtwshared.a. Thus,
incremental compilation is also done.

Shared Utility Checksum

As explained in “Incremental Shared Utility Generation and Compilation”
on page 4-50, Real-Time Workshop uses the shared utilities directory

when you explicitly configure a model to use the shared location

or the model contains Model blocks. During the code generation

process, if relative to the current directory, the configuration file

slprj/target/ _sharedutils/checksummap.mat exists, Real-Time Workshop
reads that file and ensures that the current model being built has identical
settings for the required model properties. If mismatches occur between the

Sharing Utility Functions

properties defined in checksummap.mat and the current model properties,
the following dialog appears:

<) Warning!

Q)

Error with build directory ‘s \temphelpritarts_sharedutils'. The build
directory must remain conzsigtent for a target. The inconsistent parameters
for model ‘twdemo_counter' are shown as: current [previous).

Hardware Impl:: production signed integer division round to : Floor
[Undefined]

To build the model in this directory with curent zettings, select ‘Remove
existing directory and Stop' button to remove the existing directory. Then
start the build again. Othenwize to stop the build process, select 'Stop
code generation' button. Then edit the parameters.

| Femove existing directary and St0p§|

Stop code generation

=10l

The following table lists properties that must match for the shared utility

checksum.
Category Properties
Hardware get param(bdroot,
Implementation 'TargetShiftRightIntArith')
configuration get param(bdroot, 'TargetEndianess')
properties get param(bdroot, 'ProdEndianess')
get param(bdroot, 'TargetBitPerChar')
get param(bdroot, 'TargetBitPerShort')
get param(bdroot, 'TargetBitPerInt')
get param(bdroot, 'TargetBitPerLong')
get param(bdroot, 'ProdHWWordLengths')
get param(bdroot, 'TargetWordSize')
get param(bdroot, 'ProdWordSize')
get param(bdroot, 'TargetHWDeviceType')
get param(bdroot, 'ProdHWDeviceType')
get param(bdroot, 'TargetIntDivRoundTo')
get _param(bdroot, 'ProdIntDivRoundTo'
Additional get param(bdroot, 'TargetLibSuffix')
configuration get param(bdroot, 'TargetLang')
properties get param(bdroot, 'TemplateMakefile')

4-51

4 Building Subsystems and Working with Referenced Models

4-52

ERT target properties | get_param(bdroot, 'PurelyIntegerCode')
get param(bdroot, 'SupportNonInlinedSFcns'

Platform property Return value of the computer command

Shared Fixed-Point Utilities

An important set of generated functions that are placed in the shared utility
directory are the fixed-point support functions. Based on model and block
properties, there are many possible versions of fixed-point utilities functions
that make it impractical to provide a complete set as static files. Generating
only the required fixed-point utility functions during the code generation
process is an efficient alternative.

The shared utility checksum mechanism ensures that several critical
properties are identical for all models that use the shared utilities. For the
fixed-point functions, there are additional properties that affect function
behavior. These properties are coded into the functions and filenames to
ensure requirements are maintained. The additional properties include

Category Function/Property
Block ¢ Fixed-point operation being performed by the block
properties

¢ Fixed-point data type and scaling (Slope, Bias) of
function inputs and outputs

e Overflow handling mode (Saturation, Wrap)

® Rounding Mode (Floor, Ceil, Zero)

Model get param(bdroot, 'NoFixptDivByZeroProtection')
properties

The naming convention for the fixed-point utilities is based on the properties
as follows:

operation + [zero protection] + output data type + output bits +
[input1 data] + inputi bits + [input2 data type + input2 bits] +

[shift direction] + [saturate mode] + [round mode]

Sharing Utility Functions

Below are examples of generated fixed-point utility files, the function or macro
names in the file are identical to the filename without the extension.

FIX2FIX_U12_U16.c
FIX2FIX_S9_S9 SR99.c
ACCUM_POS_S30_S30.h
MUL_S30_S30_S16.h
div_nzp_s16s32_floor.c
div_s32 sat floor.c

For these examples, the respective fields correspond as follows:

Operation

Zero protection
Output data type
Output bits
Input data type
Input bits

Shift direction
Saturate mode

Round mode

FIX2FIX FIX2FIX ACCUM POS MUL div div
NULL NULL NULL NULL _nzp NULL
Y S S S _S _S

12 9 30 30 16 32

v _S S S [and _S] S NULL
16 9 30 30 [and 16] 32 NULL
NULL SR99 NULL NULL NULL NULL
NULL NULL NULL NULL NULL _sat
NULL NULL NULL NULL _floor _floor

Note For the ACCUM_POS example, the output variable is also used as one of
the input variables. Therefore, only the output and second input is contained
in the file and macro name. For the second div example, both inputs and
the output have identical data type and bits. Therefore, only the output is
included in the file and function name.

4-53

4 Building Subsystems and Working with Referenced Models

4-54

Supporting Shared Utility Directories in the Build Process

The shared utility directories (slprj/target/ sharedutils) typically store
generated utility code that is common to a top-level model and the models
it references. You can also force the build process to use a shared utilities
directory for a standalone model. See “Sharing Utility Functions” on page
4-48 for details.

If you want your target to support compilation of code generated in the
shared utilities directory, several updates to your template makefile (TMF)
are required. Support for the shared utilities directory is a necessary, but
not sufficient, condition for supporting model reference builds. See “Making
Custom Targets Compatible with Model Reference” on page 4-41 to learn about
additional updates that are needed for supporting model reference builds.

The exact syntax of the changes can vary due to differences in the make
utility and compiler/archive tools used by your target. The examples below
are based on the GNU make utility. You can find the following updated TMF
examples for GNU and Microsoft Visual C make utilities in the GRT and
ERT target directories:
o GRT: matlabroot/rtw/c/grt/

= grt_lcc.tmf

= grt_vc.tmf

= grt_unix.tmf
e ERT: matlabroot/rtw/c/ert/

= ert_lcc.tmf

= ert_vc.tmf

= ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of
the changes and additions described below.

Supporting Shared Utility Directories in the Build Process

Note The ERT-based TMF's contain extra code to handle generation of ERT
S-functions and model reference simulation targets. Your target does not
need to handle these cases.

Modifying Template Makefiles to Support Shared
Utilities

Make the following changes to your TMF to support the shared utilities
directory:

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

SHARED_SRC
SHARED_SRC_DIR
SHARED BIN DIR
SHARED_LIB

| >SHARED_SRC< |
| >SHARED_SRC_DIR<|
| >SHARED_BIN_DIR<|
| >SHARED LIB<|

SHARED_SRC specifies the shared utilities directory location and the source
files in it. A typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as
in the following expansion.

SHARED L1IB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate
directories for shared source files and the library compiled from the source
files. In the current release, all TMF's use the same path, as in the following
expansions.

SHARED_SRC _DIR = ../slprj/ert/_sharedutils
SHARED_BIN_DIR ../slprj/ert/_sharedutils

4-55

4 Building Subsystems and Working with Referenced Models

4-56

2 Set the SHARED_INCLUDES variable according to whether shared utilities
are in use. Then append it to the overall INCLUDES variable.

SHARED_INCLUDES =

ifneq ($(SHARED_SRC DIR),)
SHARED_INCLUDES = -I$(SHARED_ SRC_DIR)
endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \
$(USER_INCLUDES) $(SHARED_INCLUDES)

3 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT OPTS = -0 $@

6 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED BIN DIR)/%.0 : $(SHARED_SRC DIR)/%.c

$(CC) -c $(CFLAGS) $(SHARED OUTPUT OPTS) $<

7 Provide a rule to create a library of the shared utilities. The following
example is UNIX based.

$(SHARED LIB) : $(SHARED OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED 0BJS)
@echo "### Created $@ "

Supporting Shared Utility Directories in the Build Process

8 Add SHARED_LIB to the rule that creates the final executable.

$ (PROGRAM) : $(OBJS) $(LIBS) $(SHARED LIB)

$(LD) $(LDFLAGS) -0 $@ $(LINK OBJS) $(LIBS) $(SHARED LIB)\
$(SYSLIBS)

@echo "### Created executable: $(MODEL)"

9 Remove any explicit reference to rt_nonfinite.c or rt_nonfinite.cpp
from your TMF. For example, change

ADD_SRCS

$(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)

4-57

4 Building Subsystems and Working with Referenced Models

4-58

Working with Data
Structures

Parameters: Storage, Interfacing, Explains how to generate storage

and Tuning (p. 5-2) declarations for communicating
model parameters to and from
user-written code

Signal Storage, Optimization, and Explains how signal storage

Interfacing (p. 5-27) optimizations work, and how to
generate storage declarations for
communicating model signals to and
from user-written code

Simulink Data Objects and Code Explains how to represent and store

Generation (p. 5-43) signals and parameters in Simulink
data objects, and how Real-Time
Workshop generates code from these
objects

Block States: Storing and Interfacing Explains how to generate storage

(p. 5-69) declarations for communicating
discrete block states to and from
user-written code

Storage Classes for Data Store Explains how to control data

Memory Blocks (p. 5-78) structures that define and initialize
named shared memory regions, used
by the Data Store Read and Data
Store Write blocks

5 Working with Data Structures

5-2

Parameters: Storage, Interfacing, and Tuning

This section discusses how Real-Time Workshop generates parameter storage
declarations, and how you can generate the storage declarations you need to
interface block parameters to your code.

If you are using S-functions in your model and intend to tune their run-time
parameters in the generated code, see “Tuning Runtime Parameters” in the
Simulink documentation. Note that

® Parameters must be numeric, logical, or character arrays.
® Parameters may not be sparse.

® Parameter arrays must not be greater than 2 dimensions.

For guidance on implementing a parameter tuning interface using a C-API,
see “C-API for Interfacing with Signals and Parameters” on page 17-2.

Simulink external mode offers a way to monitor signals and modify parameter
values while generated model code executes. However, external mode might
not be appropriate for your application in some cases. The S-function target
does not support external mode, for example. For other targets, you might
want your existing code to access parameters and signals of a model directly,
rather than using the external mode communications mechanism. For
information on external mode, see Chapter 6, “External Mode”.

Storage of Nontunable Parameters

By default, block parameters are not tunable in the generated code. When
Inline Parameters is off (the default), Real-Time Workshop has control of
parameter storage declarations and the symbolic naming of parameters in the
generated code.

Nontunable parameters are stored as fields within model P (formerly rtP),
a model-specific global parameter data structure. Real-Time Workshop
initializes each field of model P to the value of the corresponding block
parameter at code generation time.

When the Inline parameters option is on, block parameters are evaluated at
code generation time, and their values appear as constants in the generated

Parameters: Storage, Interfacing, and Tuning

code, if possible (in certain circumstances, parameters cannot be inlined, and
are then included in a constant parameter or model parameter structure.)

As an example of nontunable parameter storage, consider this model.

e o
Sine Mfawe Gain Dutt

The workspace variable Kp sets the gain of the Gain1 block.

E! Block Parameters: Gain i 2=l

Gain
’7 Element-wize gain [y = K.*u] or matrix gain [y = K*u or y = uk).

Signal data types I Parameter data types I

Gain:

[

Multiplication: I Element-wisefk. "u) LI

Sample time [-1 for inherited]:

|1

Ok I Lancel | Help | Apply |

Assume that Kp is nontunable and has a value of 5.0. The table below shows
the variable declarations and the code generated for Kp in the noninlined
and inlined cases.

Notice that the generated code does not preserve the symbolic name
Kp. The noninlined code represents the gain of the Gain1 block as
model P.Gain1_Gain. When Kp is noninlined, the parameter is tunable.

5 Working with Data Structures

Inline Generated Variable Declaration and Code
Parameters

Off
struct Parameters_non_tunable sin { real T SineWave_Amp;

real T SineWave Bias;
real T SineWave Freq;
real T SineWave_Phase;
real T Gain_Gain;

b

Parameters_non_tunable_sin non_tunable sin P = {

1.0 , /* SineWave Amp : '<Root>/Sine Wave' */
0.0 , /* SineWave_Bias : '<Root>/Sine Wave' */
1.0 , /* SineWave Freq : '<Root>/Sine Wave' */
0.0 , /* SineWave_Phase : '<Root>/Sine Wave' */
5.0 /* Gain_Gain : '<Root>/Gain' */

b

non_tunable_sin_Y.Out1 = rtb_u *
non_tunable_sin_P.Gain_Gain;

non_tunable_sin_Y.Out1 = rtb_u * 5.0;

Tunable Parameter Storage

A tunable parameter is a block parameter whose value can be changed at
run-time. A tunable parameter is inherently noninlined. Consequently, when
Inlined parameters is off, all parameters are members of model P, and thus
are tunable. A tunable expression is an expression that contains one or more
tunable parameters.

5-4

Parameters: Storage, Interfacing, and Tuning

When you declare a parameter tunable, you control whether or not the
parameter is stored within model P. You also control the symbolic name of
the parameter in the generated code.

When you declare a parameter tunable, you specify

® The storage class of the parameter.

In Real-Time Workshop, the storage class property of a parameter specifies
how Real-Time Workshop declares the parameter in generated code.

The term “storage class,” as used in Real-Time Workshop, is not
synonymous with the term storage class specifier, as used in the C language.

® A storage type qualifier, such as const or volatile. This is simply a string
that is included in the variable declaration, without error checking.

¢ (Implicitly) the symbolic name of the variable or field in which the
parameter is stored. Real-Time Workshop derives variable and field names
from the names of tunable parameters.

Real-Time Workshop generates a variable or struct storage declaration for
each tunable parameter. Your choice of storage class controls whether the
parameter is declared as a member of model P or as a separate global variable.

You can use the generated storage declaration to make the variable visible
to external legacy code. You can also make variables declared in your code
visible to the generated code. You are responsible for properly linking your
code to generated code modules.

You can use tunable parameters or expressions in your root model and
in masked or unmasked subsystems, subject to certain restrictions. (See
“Tunable Expressions” on page 5-13.)

Overriding Inlined Parameters for Tuning

When the Inline parameters option is selected, you can use the Model
Parameter Configuration dialog box to remove individual parameters from
inlining and declare them to be tunable. This allows you to improve overall
efficiency by inlining most parameters, while at the same time retaining the
flexibility of run-time tuning for selected parameters. Another way you can

5-5

5 Working with Data Structures

5-6

achieve the same result is by using Simulink data objects; see “Simulink Data
Objects and Code Generation” on page 5-43 for specific details.

The mechanics of declaring tunable parameters are discussed in “Using the
Model Parameter Configuration Dialog Box” on page 5-9.

Storage Classes of Tunable Parameters

Real-Time Workshop defines four storage classes for tunable parameters. You
must declare a tunable parameter to have one of the following storage classes:

® SimulinkGlobal (Auto): SimulinkGlobal (Auto) is the default storage
class. Real-Time Workshop stores the parameter as a member of model P.
Each member of model P is initialized to the value of the corresponding
workspace variable at code generation time.

® ExportedGlobal: The generated code instantiates and initializes the
parameter and model . h exports it as a global variable. An exported global
variable is independent of the model P data structure. Each exported
global variable is initialized to the value of the corresponding workspace
variable at code generation time.

® ImportedExtern: model private.h declares the parameter as an extern
variable. Your code must supply the proper variable definition and
initializer.

® ImportedExternPointer: model private.h declares the variable as
an extern pointer. Your code must supply the proper pointer variable
definition and initializer, if any.

The generated code for model.h includes model private.h to make the
extern declarations available to subsystem files.

Parameters: Storage, Interfacing, and Tuning

As an example of how the storage class declaration affects the code generated
for a parameter, consider the model shown below.

ZBlock Parameters: Gainl 2=l
Gain
’7 Element-wize gain [y = K.*u] or matriz gain [= Ku or p = uk),

ISignaI data types I Parameter data types I

Gain:

[
Multiplication: I Element-wizelk. *u) LI

Sample time [-1 for inherited]:

|1
Ok I Lancel | Help | Apply |

The workspace variable Kp sets the gain of the Gain1 block. Assume that
the value of Kp is 3.14. The following table shows the variable declarations
and the code generated for the gain block when Kp is declared as a tunable
parameter. An example is shown for each storage class.

Note Real-Time Workshop uses column-major ordering for two-dimensional
signal and parameter data. When interfacing your hand-written code to
such signals or parameters by using ExportedGlobal, ImportedExtern, or
ImportedExternPointer declarations, make sure that your code observes this
ordering convention.

The symbolic name Kp is preserved in the variable and field names in the
generated code.

5-7

5 Working with Data Structures

Storage Class

Generated Variable Declaration and Code

SimulinkGlobal
(Auto) typedef struct _Parameters_tunable sin
Parameters_tunable sin;
struct _Parameters_tunable sin {
real T Kp;
b
Parameters_tunable_sin tunable_sin_P =
3.14
b
tunable sin_Y.Out1 rtb_u *
tunable_sin_P.Kp;
ExportedGlobal
real T Kp = 3.14;
tunable sin_Y.Out1 rtb_u * Kp;
ImportedExtern
extern real T Kp;
tunable sin_Y.Out1 rtb_u * Kp;
ImportedExtern
Pointer extern real T *Kp;
tunable sin_Y.Out1 rtb_u * (*Kp);

Parameters: Storage, Interfacing, and Tuning

Using the Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box is available only when the
Inline parameters option on the Optimization pane is selected. Selecting
this option activates the Configure button, as shown below:

Optimization

—Simulation and code generation

I Block reduction optimization ¥ Conditional input branch execution

||7 Inline parameters Configure ... | I

Application lifespan [da_l,ls]Tinf

—Code generation

—Signal
¥ Enable local block outputs ¥ Reuse block outputs
[lgnore integer downcasts in folded expressions [~ Inling invariant signals

¥ Eliminate superfluous temporary variables [Expression folding)

Loop unrolling threshold: |5

—Integer and fixed-point

I~ Remove code fram floating-point to integer conversions that waps out-of-range values

Clicking the Configure button opens the Model Parameter Configuration
dialog box.

Note The Model Parameter Configuration dialog box has no capability to tune
parameters within referenced models (models invoked by Model blocks). You
can tune parameters in referenced models on a per-instance basis by defining
them in argument lists in the referenced models, and then declaring values
for these parameter arguments in the Model block dialog boxes. You can tune
parameters in referenced models globally by declaring Simulink.Parameter
objects for them in the MATLAB workspace (not in model workspaces).

5 Working with Data Structures

5-10

«):Model Parameter Configuration: f14 10l =|
rDescription
Define the global (tunable) parameters for your model. These parameters affect:
1. the simulation by providing the ability to tune parameters during execution, and
2. the generated code by enabling access to parameters by other modulas.
rSource list Global funahle) parameters
MATLAB workspace j Mame Storage class | Storage type gualifier
T 1|aciopal |ExportedGiobal Jid | -
REME 2| anExtermn [ImporedExtem Jid | -
il Zw — 3| anExtemp|ImportedExtemPoint... = || -
23K s SimulinkGlobal (Auto) | -
23| aGlobal =
24| anExfern
25| anExfernP
26| h
27| emdgain
28|y
29| kP -
Refresh list Add to table == R | Remaove |
Ready QK | Cancel | Help | Apply |

The Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box lets you select base workspace
variables and declare them to be tunable parameters in the current model.
The dialog box is divided into two panels:

* The Source list panel displays a list of workspace variables and lets you
add them to the tunable parameters list.

¢ The Global (tunable) parameters panel displays and maintains a list of
tunable parameters associated with the model.

To declare tunable parameters, you select one or more variables from the
Source list, add them to the Global (tunable) parameters list, and set
their storage class and other attributes.

Parameters: Storage, Interfacing, and Tuning

Source List Panel

The Source list panel displays a menu and a scrolling table of numerical
workspace variables.

The menu lets you choose the source of the variables to be displayed in the
list. There are two choices: MATLAB workspace (lists all variables in the
MATLAB workspace that have numeric values), and Referenced workspace
variables (lists only those variables referenced by the model). The source list
displays names of variables defined in the MATLAB base workspace.

Selecting one or more variables from the source list enables the Add to
table button. Clicking Add to table adds selected variables to the tunable
parameters list in the Global (tunable) parameters panel. This action

is all that is necessary to declare tunable parameters. However, if a block
parameter which is not tunable is set to the name that appears on this list, a
warning results during simulation and also during code generation.

In the Source list, the names of variables added to the tunable parameters
list are displayed in bold type (see the preceding figure).

The Refresh list button updates the table of variables to reflect the current
state of the workspace. If you define or remove variables in the workspace
while the Model Parameter Configuration dialog box is open, click the
Refresh list button when you return to the dialog box. The new variables
are added to the source list.

Global (Tunable) Parameters Panel

The Global (tunable) parameters panel displays a scrolling table of
variables that have been declared tunable in the current model and lets you
specify their attributes. The Global (tunable) parameters panel also lets
you remove entries from the list or create new tunable parameters.

You select individual variables and change their attributes directly in the
table. The attributes are

* Storage class of the parameter in the generated code. Select one of
= SimulinkGlobal (Auto)
= ExportedGlobal

5-11

5 Working with Data Structures

5-12

= ImportedExtern
= ImportedExternPointer
See “Storage Classes of Tunable Parameters” on page 5-6 for definitions.

* Storage type qualifier of the variable in the generated code. For
variables with any storage class except SimulinkGlobal (Auto), you can
add a qualifier (such as const or volatile) to the generated storage
declaration. To do so, you can select a predefined qualifier from the list or
add additional qualifiers to the list.The code generator does not check the
storage type qualifier for validity. The code generator includes the qualifier
string in the generated code without syntax checking.

* Name of the parameter. This field is used only when creating a new
tunable variable.

Use the New button to create a new tunable variable entry in the Global
(tunable) parameters list. Enter the name and attributes of the variable
and click Apply. The new variable does not need to be in use when you do
this. At a later time, you can add references to any such variable in the model.

If the name you enter matches the name of an existing workspace variable
in the Source list, that variable is declared tunable, and is displayed in
italics in the Source list.

Use the Remove button to delete selected variables from the Global
(tunable) parameters list. All such removed variables will be inlined if
Inlined parameters is on.

Note If you edit the name of an existing variable in the list, you actually
create a new tunable variable with the new name. The previous variable is
removed from the list and loses its tunability (that is, it is inlined).

Parameters: Storage, Interfacing, and Tuning

Declaring Tunable Variables
To declare an existing variable tunable

1 Open the Model Parameter Configuration dialog box.
2 In the Source list panel, click the desired variable in the list to select it.

3 Click the Add to table button. The variable then appears in the table of
tunable variables in the Global (tunable) parameters panel.

4 Click the variable in the Global (tunable) parameters panel.
5 Select the desired storage class from the Storage class menu.

6 Optionally, select (or enter) a storage type qualifier, such as const or
volatile that you want the variable to have.

7 Click Apply, or click OK to apply changes and close the dialog box.

Tunable Expressions

Real-Time Workshop supports the use of tunable variables in expressions. An
expression that contains one or more tunable parameters is called a tunable
expression.

* “Tunable Expressions in Masked Subsystems” on page 5-13

* “Tunable Expression Limitations” on page 5-15

Tunable Expressions in Masked Subsystems

Tunable expressions are allowed in masked subsystems. You can use tunable
parameter names or tunable expressions in a masked subsystem dialog box.
When referenced in lower-level subsystems, such parameters remain tunable.

As an example, consider the masked subsystem depicted below. The masked
variable k sets the gain parameter of theGain.

In1 Outd

theain

5-13

5 Working with Data Structures

5-14

Suppose that the base workspace variable b is declared tunable with
SimulinkGlobal (Auto) storage class. The following figure shows the
tunable expression b*3 in the subsystem’s mask dialog box.

Z1Block Parameters: maskerl | 2=l

—Subspstem [mazk]

Ok I Lancel | Help | Apply |

Tunable Expression in Subsystem Mask Dialog Box

Real-Time Workshop produces the following output computation for theGain.
The variable b is represented as a member of the global parameters structure,
model_P. (For clarity in showing the individual Gain block computation,
Expression folding was turned off in this example.)

/* Gain: '<S81>/theGain' */
rtb_theGain_C = rtb_SineWave _n * ((subsys _mask P.b * 3.0));

/* Outport: '<Root>/Outtl' */
subsys_mask_Y.Out1 = rtb_theGain_C;

As this example illustrates, for GRT targets, the parameter structure is
mangled to create the structure identifier model P (subject to the identifier
length constraint). This is done to avoid namespace clashes in combining
code from multiple models using model reference. ERT-based targets provide
ways to customize identifier names.

When Expression folding is turned on, the above code condenses to

/* Outport: '<Root>/Outi1' incorporates:
* Gain: '<S1>/theGain'
*/
subsys_mask_Y.Out1 = rtb_SineWave n * ((subsys _mask P.b * 3.0));

Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

Parameters: Storage, Interfacing, and Tuning

As an example, consider the subsystem above, modified as follows:

¢ The mask initialization code is
t =3 * k;

® The parameter k of the myGain block is 4 + t.

® Workspace variable b = 2. The expression b * 3 is plugged into the mask
dialog box as in the preceding figure.

Since the mask initialization code can run only once, k is evaluated at code
generation time as

4+ (3 * (2 *3))

Real-Time Workshop inlines the result. Therefore, despite the fact that b
was declared tunable, the code generator produces the following output
computation for theGain. (For clarity in showing the individual Gain block
computation, Expression folding was off in this example.)

/* Gain Block: <S1>/theGain */
rtb_temp0 *= (22.0);

Tunable Expression Limitations

Currently, there are certain limitations on the use of tunable variables in
expressions. When an unsupported expression is encountered during code
generation, a warning is issued and the equivalent numeric value is generated
in the code. The limitations on tunable expressions are

* Complex expressions are not supported, except where the expression is
simply the name of a complex variable.

® The use of certain operators or functions in expressions containing tunable
operands is restricted. Restrictions are applied to four categories of
operators or functions, classified in the following table:

5-15

5 Working with Data Structures

Category | Supported Operators or Functions

1 + - . F L) <> <=>= == ~= & |
2 *
3 abs, acos, asin, atan, atan2, boolean, ceil, cos, cosh,

exp, floor, int8, int16, int32, log, 1log10, sign, sin,
sinh, sqrt, tan, tanh, uint8, uint16, uint32

4 N 1 I 1 T W S

The rules applying to each category are as follows:

= Category 1 is unrestricted. These operators can be used in tunable
expressions with any combination of scalar or vector operands.

= Category 2 operators can be used in tunable expressions where at least
one operand is a scalar. That is, scalar/scalar and scalar/matrix operand
combinations are supported, but not matrix/matrix.

= Category 3 lists all functions that support tunable arguments. Tunable
arguments passed to these functions retain their tunability. Tunable
arguments passed to any other functions lose their tunability.

= Category 4 operators are not supported.

Note The “dot” (structure membership) operator is not supported. This
means that expressions that include a structure member are not tunable.

® Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

® The Fen block does not support tunable expressions in code generation.

® Model workspace parameters can take on only the Auto storage class, and
thus are not tunable. To tune parameters in referenced models globally,
declare Simulink.Parameter objects for them in the MATLAB workspace
(not in model workspaces).

® Non-double expressions are not supported.

5-16

Parameters: Storage, Interfacing, and Tuning

Tunability of Linear Block Parameters
The following blocks have a Realization parameter that affects the

tunability of their parameters:
¢ Transfer Fen

® State-Space

® Discrete Transfer Fen

® Discrete State-Space

® Discrete Filter

The Realization parameter must be set by using the MATLAB set param
function, as in the following example.

set_param(gchb, 'Realization', 'auto')
The following values are defined for the Realization parameter:
e general: The block’s parameters are preserved in the generated code,

permitting parameters to be tuned.

e sparse: The block’s parameters are represented in the code by transformed
values that increase the computational efficiency. Because of the
transformation, the block’s parameters are no longer tunable.

e auto: This setting is the default. A general realization is used if one or
more of the block’s parameters are tunable. Otherwise sparse is used.

Note To tune the parameter values of a block of one of the above types
without restriction during an external mode simulation, you must set
Realization to general.

Code Reuse for Subsystems with Mask Parameters

Real-Time Workshop can generate reusable (reentrant) code for a model
containing identical atomic subsystems. Selecting the reusable function
option for RTW system code enables such code reuse, and causes a single
function with arguments to be generated that is called when any of the

5-17

5 Working with Data Structures

5-18

identical atomic subsystem executes. See “Reusable Function Option” on page
4-12 for details and restrictions on the use of this option.

Mask parameters become arguments to reusable functions. However, for
reuse to occur, each instance of a reusable subsystem must declare the same
set of mask parameters. If, for example subsystem A has mask parameters
b and K, and subsystem B has mask parameters ¢ and K, then code reuse is
not possible, and Real-Time Workshop will generate separate functions for
A and B.

Parameters: Storage, Interfacing, and Tuning

[OFF]

Inline
Parameters

\

ON<

Parameter Configuration Quick Reference Diagram

The following figure illustrates the code generation and storage class options
that control the representation of parameters in generated code.

REAL - TIME WORKSHOP

CONTROLS SYMBOL USED IN CODE

y = u* (rtP.<?77>);

Include parameters as fields
in a global structure
(field names based on block names)

REAL - TIME WORKSHOP

CONTROLS SYMBOL USED IN CODE

-

&rtP.<777>[0];

/_
B v sy
[Auto]{
((implicit) \E const *p <777> =
for (i=0; i<N; i++){
y[i] = u * (p_<??%>[i]);
].

Use numeric value of
paraneter(if possible)

Otherwise, include in a
constant global structure

S/

INCLUDED IN LIST OF GLOBAL (TUNABLE) PARAMETERS

[SimulinkGlobal(Auto)] H ¥y = u* (rtP.Kp);
ExportedGlobal E y = u* (Kp);
Imported Extern E y = u* (Kp});

k TmportedExternPointer ¥ = u¥* {*Kp});

~

Include in a
global structure

Symbol preserved

Unstructured (must be unique)

storage

S/

KEY:

[option] : default for code generation option

<?7?> RTW generated symbol for parameter storage field

5-19

5 Working with Data Structures

5-20

Generated Code for Parameter Data Types

For an example of the code generated from Simulink parameters with
different data types, run the demo model rtwdemo_paramdt. This demo model
illustrates options that are available for controlling the data type of tunable
parameters in the generated code. The model’s subsystem includes several
instances of Gain blocks feeding Saturation blocks. Each pair of blocks uses a
workspace variable of a particular data type, as shown in the following figure.

Inlined parameters (InlineParameters ON + Auto storage class)
==> numeric value inlined

Upper: Kinline
Lower: 0

Double-precision (context-sensitive) parameters
=== tunable parameter inherits data type from run-time parameter

sirge Kes sirge » ; single =@
Upper: Kcs
Lower: 0

Tunahle parameters with explicit data type specification
==> parameter is cast to run-time parameter data type in generated code

sinde sinde singe

Ksingle

Upper: Ksingle
Lower: 0

Upper: Kintd
Lower: 0

sinde Kfixpt sinde singe

Upper: Kfixpt
Lower: 0

Kalias

Upper: Kalias
Lower: 0

.? singe Kuser singe .E single .?
1]

Upper: Kuser
Lower: 0

Simulink initializes the parameters in the demo model by executing the script
rtwdemo_paramdt_data.m. You can view the initialization script and inspect
the workspace variables in Model Explorer by double-clicking the appropriate
yellow boxes in the demo model.

Parameters: Storage, Interfacing, and Tuning

In the demo model, note that the Inline parameters option on the
Optimization pane of the Configuration Parameters dialog box is
selected. The Model Parameter Configuration dialog box reveals that

all base workspace variables (with the exception of Kinline) have their
Storage class property set to ExportedGlobal. Consequently, Kinline is a
nontunable parameter while the remaining variables are tunable parameters.

To generate code for the demo model, double-click the blue boxes. The
following table shows both the MATLAB code used to initialize parameters
and the code generated for each parameter in the rtwdemo_paramdt model.

Parameter & MATLAB Code Generated Variable Declaration and Code

Kinline

Kinline = 2;

rtb_Gain1 = rtwdemo_paramdt_U.In1 * 2.0F;

rtwdemo_paramdt_Y.Out1 = rt_SATURATE(rtb_Gaini, 0.0F, 2.0F);

Kces
real32_T Kcs = 3.0F;
Kcs = 3;
rtb_Gain1 = rtwdemo_paramdt_U.In2 * Kcs;
rtwdemo_paramdt_Y.Out2 = rt_SATURATE(rtb_Gaini, 0.0F, Kcs);
Ksingle

Ksingle = single(4);

real32_T Ksingle = 4.0F;

rtb_Gain1 = rtwdemo_paramdt_U.In3 * Ksingle;

rtwdemo_paramdt_Y.Out3 = rt_SATURATE(rtb_Gaini, 0.0F, Ksingle);

5-21

5 Working with Data Structures

Parameter & MATLAB Code Generated Variable Declaration and Code

Kint8
int8_T Kint8 = 5;
Kint8 = int8(5);

rtb_Gain1 = rtwdemo_paramdt_U.In4 * ((real32_T)(Kint8));

rtwdemo_paramdt_Y.Out4 = rt_SATURATE(rtb_Gaini, 0.0F,
((real32_T)(Kint8)));

Kfixpt
int16_T Kfixpt = 192;
Kfixpt = Simulink.Parameter;

Kfixpt.value = 6;

[SrpEBEEEUYRD = ooc rtb_Gain1 = rtwdemo_paramdt_U.In5 *

'fixdt(true, 16, 2~-5, 0)'; (((real32_T)ldexp((real_T)Kfixpt, -5)));

Kfixpt.RTWInfo.StorageClass = ...
'ExportedGlobal’;

rtwdemo_paramdt_Y.Out5 = rt_SATURATE(rtb_Gaini, 0.0F,
(((real32_T)ldexp((real_T)Kfixpt, -5))));

5-22

Parameters: Storage, Interfacing, and Tuning

Parameter & MATLAB Code

Generated Variable Declaration and Code

Kalias

aliasType = ...
Simulink.AliasType('single');

Kalias = Simulink.Parameter;

Kalias.Value = 7;

Kalias.DataType = 'aliasType';

Kalias.RTWInfo.StorageClass = ...
'ExportedGlobal’;

typedef real32_T aliasType;

aliasType Kalias = 7.0F;

rtb_Gain1 = rtwdemo_paramdt_U.In6 * Kalias;

rtwdemo_paramdt_Y.Out6 = rt_SATURATE(rtb_Gaini, 0.0F, Kalias);

Kuser

userType = Simulink.NumericType;

userType.DataTypeMode = ...
'Fixed-point: slope and bias scaling';

userType.Slope = 2°-3;

userType.isAlias = true;

Kuser = Simulink.Parameter;

Kuser.Value = 8;

Kuser.DataType = 'userType';

Kuser.RTWInfo.StorageClass = ...
'ExportedGlobal’;

typedef int16_T userType;

userType Kuser = 64;

rtb_Gain1 = rtwdemo_paramdt_U.In7 *
(((real32_T)ldexp((real_T)Kuser, -3)));

rtwdemo_paramdt_Y.Out7 = rt_SATURATE(rtb_Gaini, 0.0F,
(((real32_T)ldexp((real_T)Kuser, -3))));

The salient features of the code generated for this demo model are as follows:

¢ Real-Time Workshop inlines nontunable parameters, for example, Kinline.
However, Real-Time Workshop does not inline tunable parameters, such
as Kcs, Ksingle, and Kint8.

® Simulink treats tunable parameters of data type double in a
context-sensitive manner, such that the parameter inherits its data type
from the context in which the block uses it. For example, Kcs inherits a
single data type from the Gain block’s input signal.

e Ifa parameter’s data type matches that of the block’s run-time parameter,
the block can use the tunable parameter without any transformation.

5-23

5 Working with Data Structures

5-24

Consequently, Real-Time Workshop need not cast the parameter from one
data type to another, as illustrated by Ksingle and Kalias. However,

if a parameter’s data type does not match that of the block’s run-time
parameter, the block cannot readily compute its output. In this case,
Real-Time Workshop casts parameters to the appropriate data type. For
example, Kint8, Kfixpt, and Kuser require casts to a single data type for
compatibility with the input signals to the Gain and Saturation blocks.

e Ifyou are using an ERT target and a parameter specifies a data type alias,
for example, created by an instance of the Simulink.AliasType class, its
variable definition in the generated code uses the alias data type. For
example, Real-Time Workshop declares Kalias and Kuser to be of data
types aliasType and userType, respectively.

e If a parameter specifies a fixed-point data type, Real-Time Workshop
initializes its value in the generated code to the value of Q computed from
the expression V = SQ + B (see the Simulink Fixed Point documentation for
more information about fixed-point semantics and notation), where

= V is a real-world value

= Q is an integer that encodes V
= S is the slope

= B is the bias

For example, Kfixpt has a real-world value of 6, slope of 2%, and bias of 0.
Consequently, Real-Time Workshop declares the value of Kfixpt to be 192.

Data Type Considerations for Tunable Workspace
Parameters

If you are using tunable workspace parameters, you need to be aware of
potential issues regarding data types. A workspace parameter is tunable
when the following conditions exist:

® You select the Inline parameters option on the Optimization pane of
the Configuration Parameters dialog box

® The parameter has a storage class other than Auto

Parameters: Storage, Interfacing, and Tuning

When generating code for tunable workspace parameters, Real-Time
Workshop checks and compares the data types used for a particular parameter
in the workspace and in Block Parameter dialog boxes.

If...

Real-Time Workshop...

The data types match

Uses that data type for the parameter in the
generated code.

You do not explicitly
specify a data type
other than double in
the workspace

Uses the data type specified by the block in
the generated code. If multiple blocks share a
parameter, they must all specify the same data
type. If the data type varies between blocks,
Real-Time Workshop generates an error similar
to the following:

Variable 'K' is used in incompatible ways
in the dialog fields of the following:
cs_params/Gain, cs_params/Gaini. The
variable'svalue is being used both directly
and after a transformation. Only one of
these usages is permitted for any given
variable.

You explicitly specify
a data type other
than double in the
workspace

Uses that data type for the parameter. The block
typecasts the parameter to that data type before
using it.

Guidelines for Specifying Data Types

The following table provides guidelines on specifying data types for tunable

workspace parameters.

If You Want to...

Then Specify Data Types in...

Minimize memory usage (int8 The workspace explicitly

instead of single)

Generate the most efficient code Blocks only

possible (no typecasting)

Interface to legacy or custom code The workspace explicitly

5-25

5 Working with Data Structures

5-26

If You Want to... Then Specify Data Types in...

Use the same parameter for The workspace explicitly
multiple blocks that specify
different data types

Minimize data entry Blocks only

Real-Time Workshop enforces limitations on the use of data types other than
double in the workspace, as explained in “Limitations on Specifying Data
Types in the Workspace Explicitly” on page 5-26.

Limitations on Specifying Data Types in the Workspace
Explicitly

When you explicitly specify a data type other than double in the workspace,
blocks typecast the parameter to the appropriate data type. This is an issue for
blocks that use pointer access for their parameters. Blocks cannot use pointer
access if they need to typecast the parameter before using it (because of a data
type mismatch). Another case in which this occurs is for workspace variables
with bias or fractional slope. Two possible solutions to these problems are

* Remove the explicit data type specification in the workspace for parameters
used in such blocks.

® Modify the block so that it uses the parameter with the same data type
as specified in the workspace. For example, the Lookup Table block uses
the data types of its input signal to determine the data type that it uses
to access the X-breakpoint parameter. You can prevent the block from
typecasting the run-time parameter by converting the input signal to the
data type used for X-breakpoints in the workspace. (Similarly, the output
signal is used to determine the data types used to access the lookup table’s
Y data.)

Signal Storage, Optimization, and Interfacing

Signal Storage, Optimization, and Interfacing

Real-Time Workshop offers a number of options that let you control how
signals in your model are stored and represented in the generated code. This
section discusses how you can use these options to

Control whether signal storage is declared in global memory space or
locally in functions (that is, in stack variables).

Control the allocation of stack space when using local storage.

Ensure that particular signals are stored in unique memory locations by
declaring them as test points.

Reduce memory usage by instructing Real-Time Workshop to store signals
in reusable buffers.

Control whether or not signals declared in generated code are interfaceable
(visible) to externally written code. You can also specify that signals are to
be stored in locations declared by externally written code.

Preserve the symbolic names of signals in generated code by using signal
labels.

The discussion in the following sections refers to code generated from
signal examp, the model shown in the figure below.

sumSig ’{2' gain Sig

Ot

a2

Constant

Signal_examp Model

5-27

5 Working with Data Structures

5-28

Signal Storage Concepts

This section discusses structures and concepts you must understand to choose
the best signal storage options for your application:

® The global block I/O data structure model B

® The concept of signal storage classes as used in Real-Time Workshop

The Global Block 1/0O Structure

By default, Real-Time Workshop attempts to optimize memory usage by
sharing signal memory and using local variables.

However, there are a number of circumstances in which it is desirable or
necessary to place signals in global memory. For example,

* You might want a signal to be stored in a structure that is visible to
externally written code.

® The number and/or size of signals in your model might exceed the stack
space available for local variables.

In such cases, it is possible to override the default behavior and store selected
(or all) signals in a model-specific global block 1/0 data structure. The global
block I/0 structure is called model_ B (in earlier versions this was called rtB).

The following code fragment illustrates how model B is defined and
declared in code generated (with signal storage optimizations off) from the
signal_examp model shown in the figure Signal_examp Model on page 5-27.

(in model.h)
/* Block signals (auto storage) */
typedef struct BlockIO _signal examp {
real T sumSig; /* '<Root>/Add' */
real T gainSig; /* '<Root>/Gain' */
} BlockIO_signal examp;

Signal Storage, Optimization, and Interfacing

(in model.c)
/* Block signals (auto storage) */
BlockIO_signal examp signal examp_B;

Field names for signals stored in model B are generated according to the
rules described in “Symbolic Naming Conventions for Signals in Generated
Code” on page 5-37.

Storage Classes for Signals

In Real-Time Workshop, the storage class property of a signal specifies how
Real-Time Workshop declares and stores the signal. In some cases this
specification is qualified by more options.

In the context of Real-Time Workshop, the term “storage class” is not
synonymous with the term storage class specifier, as used in the C language.

Default Storage Class. Auto is the default storage class. Auto is the
appropriate storage class for signals that you do not need to interface to
external code. Signals with Auto storage class can be stored in local and/or
shared variables or in a global data structure. The form of storage depends
on the Signal storage reuse, Reuse block outputs, and Enable local
block outputs options, and on available stack space. See “Signals with Auto
Storage Class” on page 5-30 for a full description of code generation options
for signals with Auto storage class.

Explicitly Assigned Storage Classes. Signals with storage classes other
than Auto are stored either as members of model B, or in unstructured global
variables, independent of model B. These storage classes are appropriate for
signals that you want to monitor and/or interface to external code.

The Signal storage reuse and Local block outputs optimizations do not
apply to signals with storage classes other than Auto.

Use the Signal Properties dialog box to assign these storage classes to signals:
® SimulinkGlobal(Test Point): Test points are stored as fields of the

model B structure that are not shared or reused by any other signal. See
“Declaring Test Points” on page 5-35 for more information.

5-29

5 Working with Data Structures

5-30

® ExportedGlobal: The signal is stored in a global variable, independent of
the model B data structure. model private.h exports the variable. Signals
with ExportedGlobal storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 5-36 for more information.

® ImportedExtern: model private.h declares the signal as an extern
variable. Your code must supply the proper variable definition. Signals
with ImportedExtern storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 5-36 for more information.

® ImportedExternPointer: model private.h declares the signal as an
extern pointer. Your code must define a valid pointer variable. Signals
with ImportedExtern storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 5-36 for more information.

Signals with Auto Storage Class

Options are available for signals with Auto storage class — Signal storage
reuse and Reuse block outputs. Use these options to control signal memory
reuse and choose local or global (model B) storage for signals. The Signal
storage reuse option is on the Optimization pane of the Configuration
Parameters dialog box, as shown below:

Optimization

—Simlation and code generation

¥ Black reduction optimization v Conditional input branch execution
™ Implement logic signals as boolean data [vs. double)]. ¥ Signal storage reuse
I Inline parameters Configure ...

Application lifespan [days]l\nf

—Code generation

—Signal
¥ Enable local block outputs ¥ Eeuse block outputs
[~ Ignore integer downcasts in folded expressions [T Inline invariant signals

¥ Eliminate superfluous temparary variables [Expression folding)

Loop unrolling threshold: |5

—Integer and fixed-point

[~ Remove code from floating-paint to integer corwersions that wiaps out-of-range values

Fevert [Hep i Apply

Signal Storage, Optimization, and Interfacing

When Signal storage reuse is on, the Enable local block outputs and
Reuse block outputs options in the Code Generation section of the dialog
box become visible, and are selected by default.

These options interact. When the Signal storage reuse option is on,

¢ The Reuse block outputs option is enabled. By default, Reuse block
outputs is on and signal memory is reused whenever possible.

¢ The Enable Local block outputs option is enabled. This lets you choose
whether reusable signal variables are declared as local variables in
functions or as members of model_B.

The following code examples illustrate the effects of the Signal storage
reuse, Reuse block outputs, and Enable local block outputs options.
The examples were generated from the signal_examp model (see figure
Signal_examp Model on page 5-27).

The first example illustrates maximal signal storage optimization, with
Signal storage reuse, Reuse block outputs, and Enable local block

outputs on (the default). The output signal from the Sum block reuses
rtb_sumSig, a variable local to the Md10utputs function.

/* local block i/o variables */

/* Model output function */

static void signal examp_output(int_T tid)
5* local block i/o variables */

real T rtb_sumSig;

/* Sum: '<Root>/Add' */

rtb_sumSig = signal_examp _U.In1 +
signal_examp_ P.Constant Value;

5-31

5 Working with Data Structures

5-32

/* Gain: '<Root>/Gain' */
rtb_sumSig *= signal_examp_ P.Gain_Gain;

/* Outport: '<Root>/Qutt1' */
signal _examp_Y.Out1 = rtb_sumSig;

}

If you are constrained by limited stack space, you can turn Enable local
block outputs off and still benefit from memory reuse. The following
example was generated with Enable local block outputs off and Signal
storage reuse and Reuse block outputs on. The output signals from the
Sum and Gain blocks use global structure signal_examp_B rather than
declaring local variables.

static void signal examp_output(int_T tid)

{

signal examp_ B.sumSig = signal examp_U.In1 +
signal_examp_ P.Constant Value;

signal_examp B.gainSig = signal_examp_B.sumSig *
signal_examp P.Gain_Gain;

signal _examp_Y.Out1 = signal_examp_ B.gainSig;

}

When the Signal storage reuse option is off, Reuse block outputs and
Enable local block outputs are disabled. This makes all block outputs
global and unique, as in the following code fragment.

static void signal examp_output(int_T tid)

{

signal examp_ B.sumSig = signal examp_U.In1 +
signal_examp P.Constant Value;

signal_examp B.gainSig = signal examp_B.sumSig *
signal_examp P.Gain_Gain;

signal _examp_Y.Out1 = signal_examp_ B.gainSig;

}

Signal Storage, Optimization, and Interfacing

In large models, disabling Signal storage reuse can significantly increase
RAM and ROM usage. Therefore, this approach is not recommended for code
deployment; however it can be useful in rapid prototyping environments.

The following table summarizes the possible combinations of the Signal
storage reuse/ Reuse block outputs and Enable local block outputs

options.

Signal storage

Signal storage reuse | reuse OFF
and Reuse block (Reuse block outputs
outputs ON disabled)

Enable local block Reuse signals in N/A

outputs ON

local memory (fully
optimized)

Enable local block
outputs OFF

Reuse signals in
model_B structure

Individual signal
storage in model_B
structure

Controlling Stack Space Allocation

When the Local block outputs option is on, the use of stack space by local
block output variables is constrained by the following TLC variables:

® MaxStackSize: The maximum number of bytes Real-Time Workshop
allocates for local variables declared by all block outputs in a model.
MaxStackSize can be any positive integer. If the total size of local block
output variables exceeds this maximum, Real-Time Workshop allocates the
remaining block output variables in global, rather than local, memory. The
default value for MaxStackSize is Inf, that is, unlimited stack size.

5-33

5 Working with Data Structures

5-34

Note Local variables in the generated code from sources other than local
block outputs and stack usage from sources such as function calls and
context switching are not included in the MaxStackSize calculation. For
overall executable stack usage metrics, you should do a target-specific
measurement, such as using run-time (empirical) analysis or static (code
path) analysis with object code.

® MaxStackVariableSize: The maximum number of bytes n, where n is
greater than zero, Real-Time Workshop allocates for any local block output
variable declared in the code. Real-Time Workshop allocates any variable
with a size that exceeds MaxStackVariableSize in global, rather than
local, memory. The default is 4096.

You may need to adjust the settings of these variables when working

with models that contain large signals. When a variable exceeds
MaxStackVariableSize, Real-Time Workshop places the variable in global
memory space. Similarly, if the accumulated size of variables in local memory
exceeds MaxStackSize, Real-Time Workshop places subsequent local variables
in global memory space. Real-Time Workshop analyzes the accumulated size
of local variables based on a worst-case scenario without taking into account
that some local variables are released after functions return.

Consider the following options for your specific model:

¢ [sit important that you maximize potential for signal storage optimization?
If so, set MaxStackSize appropriately to accommodate the size and number
of signals in your model. This minimizes overflow into global memory space
and maximizes use of local memory. Local variables offer more optimization
potential through mechanisms such as expression folding and buffer reuse.

® Is the accumulated size of local variables exceeding the MaxStackSize
setting? If so, consider setting MaxStackVariableSize to a value that
forces large local variables into the global memory space and helps retain
smaller local variables in local storage.

See “Setting Target Language Compiler Options” on page 2-79 for more
information.

Signal Storage, Optimization, and Interfacing

Declaring Test Points
A test point is a signal that is stored in a unique location that is not shared or
reused by any other signal. Test-pointing is the process of declaring a signal

to be a test point.

You declare a signal to be a test point as follows:

1 Select the signal line by right-clicking it.
2 From the context menu that pops up, select Signal properties.

Alternatively, after selecting the line that carries the signal, choose Signal
Properties from the Edit menu of your model. This also opens the Signal

Properties dialog box.

3 On the Logging and accessibility tab, select the Test point option on
the Signal properties dialog box, as shown below:

E! Signal Properties: SinSig ﬂll

Signal name: |SinSig
[~ Signal name rust rezolve to Simulink signal object
Logging and accessibility I Real-Time Workshop | Documentation I
™ Log signal data |7
—Logging name
I Uze signal name LI ISinSig

—Data
I~ Limit data points to last: ISDDD
I~ Decimation: I'I

Ok I Lancel | Help | Apply

4 Click OK to dismiss the dialog box.

A stemmed-circle icon appears on the signal line to indicate the test point,
as shown below:

AR b 1)
= 1
Sin Si Gain1 Si
WA in Sig ain 1 Sig .

Sine Miave zain

5-35

5 Working with Data Structures

5-36

Test points are stored as members of the model_B structure, even when

the Signal storage reuse and Local block outputs option are selected.
Test-pointing lets you override these options for individual signals. Therefore,
you can test-point selected signals without losing the benefits of optimized
storage for the other signals in your model.

For an example of storage declarations and code generated for a test point,
see “Summary of Signal Storage Class Options” on page 5-38.

Interfacing Signals to External Code

The Simulink Signal Properties dialog box lets you interface selected signals
to externally written code. In this way, your hand-written code has access to
such signals for monitoring or other purposes. To interface a signal to external
code, use the Real-Time Workshop tab of the Signal Properties dialog box to
assign one of the following storage classes to the signal:

® ExportedGlobal

® ImportedExtern

® ImportedExternPointer
Set the storage class as follows:

1 In your Simulink block diagram, select the line that carries the signal.
Then select Signal Properties from the Edit menu of your model. This
opens the Signal Properties dialog box. Alternatively, right-click the line
that carries the signal, and select Signal properties from the menu.

2 Select the Real-Time Workshop tab of the Signal Properties dialog box.

3 Select the desired storage class (Auto, ExportedGlobal, ImportedExtern,
or ImportedExternPointer) from the RTW storage class menu. The
figure below shows ExportedGlobal selected:

Signal Storage, Optimization, and Interfacing

E! Signal Properties: SinSig i ﬂll

Signal name: |SinSig

™ Signal name rust rezolve to Simulink signal object

Logging and accessibility | Feal-Time Workshop | Documentation I

RTw storage clazs: I ExportedGlobal LI

RTw storage type qualifier: I

Ok I Lancel | Help | Apply |

4 Optional: For storage classes other than Auto, you can enter a storage type
qualifier such as const or volatile in the RTW storage type qualifier
field. Real-Time Workshop does not check this string for errors; whatever
you enter is included in the variable declaration.

5 Click Apply.

Note You can also interface test points and other signals that are stored
as members of model_B to your code. To do this, your code must know
the address of the model_B structure where the data is stored, and other
information. This information is not automatically exported. Real-Time
Workshop provides C/C++ and Target Language Compiler APIs that
give your code access to model_B and other data structures. See “C-API
for Interfacing with Signals and Parameters” on page 17-2 for more
information.

Symbolic Naming Conventions for Signals in
Generated Code

When signals have a storage class other than Auto, Real-Time Workshop
preserves symbolic information about the signals or their originating blocks
in the generated code.

For labeled signals, field names in model_B derive from the signal
names. In the following example, the field names model B.SinSig and

5-37

5 Working with Data Structures

5-38

model B.Gain1Sig are derived from the corresponding labeled signals in the
signal_examp model (shown in figure Signal_examp Model on page 5-27).

/* Block signals (auto storage) */
typedef struct BlockIO signal examp {
real T sumSig; /* '<Root>/Add' */
real T gainSig; /* '<Root>/Gain' */
} BlockIO_signal examp;

When the optimization Signal Storage Reuse is off, sumSig is not part of
model B, and a local variable is used for it instead. For unlabeled signals,
model_B field names are derived from the name of the source block or
subsystem.

The components of a generated signal label are

® The root model name, followed by
* The name of the generating signal object, followed by

® A unique name mangling string (if required)

The number of characters that a signal label can have is limited by the
Maximum identifier length parameter specified on the Symbols pane of
the Configuration Parameters dialog box. See “Symbols Options” on page
2-65 for more detail.

When a signal has Auto storage class, Real-Time Workshop controls
generation of variable or field names without regard to signal labels.

Summary of Signal Storage Class Options

The table below shows, for each signal storage class option, the variable
declaration and the code generated for Sum (sumSig) and Gain (gainSig) block
outputs of the model shown in figure Signal_examp Model on page 5-27.

Signal Storage, Optimization, and Interfacing

Storage Class

Declaration

Code

Auto

(with signal storage
reuse optimizations
on)

In model.c or model.cpp

real_T rtb_sumSig;

rtb_sumSig = signal_examp_U.In1 +
signal_examp_P.Constant_Value;

rtb_sumSig *=
signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_sumSig;

Test point (for
sumSig only)

In model.h

typedef struct
_BlockIO_signal_examp
{

real T sumSig;

}
BlockIO_signal_examp;

In model.c or model.cpp

BlockIO_signal_examp
signal_examp_B;
real_T rtb_gainSig;

signal_examp_B.sumSig =
signal_examp_U.In1 +
signal_examp_P.Constant_Value;

rtb_gainSig =
signal_examp_B.sumSig *
signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

Exported Global
(for sumSig only)

In model.c .cpp .h

extern real_T sumSig;

In model

real T sumSig;
real T rtb_gainSig;

sumSig = signal_examp_U.In1 +
signal_examp_P.Constant_Value;
rtb_gainSig = sumSig *
signal_examp_P.Gain_Gain;
signal_examp_Y.Out1 = rtb_gainSig;

5-39

5 Working with Data Structures

5-40

Storage Class

Declaration Code

Imported Extern

In model private.h
sumSig = signal_examp_U.In1 +

extern real T sumSig; signal_examp_P.Constant_Value;
rtb_gainSig = sumSig *

In model.c or model. cpp signal_examp_P.Gain_Gain;
signal_examp_Y.Out1 = rtb_gainSig;
real T rtb_gainSig;

Imported Extern
Pointer

In model private.h
(*sumSig) = signal_examp_U.In1 +

extern real T *sumSig; signal_examp_P.Constant_Value;
rtb_gainSig = (*sumSig) *

In model.c or model. cpp signal_examp_P.Gain_Gain;
signal_examp_Y.Out1 = rtb_gainSig;
real T rtb_gainSig;

C-API for Parameter Tuning and Signal Monitoring

Real-Time Workshop includes a C application program interface (API) for
tuning parameters and monitoring signals independent of external mode.
See “C-API for Interfacing with Signals and Parameters” on page 17-2 for
information.

Target Language Compiler API for Parameter Tuning
and Signal Monitoring

Real-Time Workshop includes support for development of a Target Language
Compiler API for tuning parameters and monitoring signals independent

of external mode. See “Target Language Compiler API for Signals and
Parameters” on page 17-21 for information.

Parameter Tuning by Using MATLAB Commands

When parameters are MATLAB workspace variables, the Model Parameter
Configuration dialog box is the recommended way to see or set the attributes
of tunable parameters. In addition to that dialog box, you can also use
MATLAB get_param and set_param commands.

Signal Storage, Optimization, and Interfacing

Note You can also use Simulink.Parameter objects for tunable parameters.
See “Configuring Parameter Objects for Code Generation” on page 5-44 for
details.

The following commands return the tunable parameters and/or their
attributes:

® get param(gcs, 'TunableVars')

® get param(gcs, 'TunableVarsStorageClass')

® get param(gcs, 'TunableVarsTypeQualifier')
The following commands declare tunable parameters or set their attributes:

® set param(gcs, 'TunableVars', str)
The argument str (string) is a comma-separated list of variable names.
® set param(gcs, 'TunableVarsStorageClass', str)

The argument str (string) is a comma-separated list of storage class
settings.

The valid storage class settings are
= Auto
= ExportedGlobal
= ImportedExtern
= ImportedExternPointer
® set param(gcs, 'TunableVarsTypeQualifier', str)
The argument str (string) is a comma-separated list of storage type

qualifiers.

The following example declares the variable k1 to be tunable, with storage
class ExportedGlobal and type qualifier const. The number of variables and
number of specified storage class settings must match. If you specify multiple
variables and storage class settings, separate them with a comma.

5-41

5 Working with Data Structures

set_param(gcs, 'TunableVars', 'ki1')
set_param(gcs, 'TunableVarsStorageClass', 'ExportedGlobal')
set_param(gcs, 'TunableVarsTypeQualifier', 'const')

Other configuration parameters you can get and set are listed in
“Configuration Parameter Reference” in the Real-Time Workshop Reference.

5-42

Simulink Data Obijects and Code Generation

Simulink Data Objects and Code Generation

Before using Simulink data objects with Real-Time Workshop, read the
following:

¢ The discussion of Simulink data objects in the Simulink documentation
® “Parameters: Storage, Interfacing, and Tuning” on page 5-2

® “Signal Storage, Optimization, and Interfacing” on page 5-27

Within the class hierarchy of Simulink data objects, Simulink provides two
classes that are designed as base classes for signal and parameter storage:

® Simulink.Parameter: Objects that are instances of the
Simulink.Parameter class or any class derived from Simulink.Parameter
are called parameter objects.

® Simulink.Signal: Objects that are instances of the Simulink.Signal
class or any class derived from Simulink.Signal are called signal objects.

The RTWInfo properties of parameter and signal objects are used by Real-Time
Workshop during code generation. These properties let you assign storage
classes to the objects, thereby controlling how the generated code stores and
represents signals and parameters.

Real-Time Workshop also writes information about the properties of
parameter and signal objects to the model.rtw file. This information,
formatted as Object records, is accessible to Target Language Compiler
programs. For general information on Object records, see the Target
Language Compiler documentation.

The general procedure for using Simulink data objects in code generation
is as follows:

1 Define a subclass of one of the built-in Simulink.Data classes.
® For parameters, define a subclass of Simulink.Parameter.

® For signals, define a subclass of Simulink.Signal.

5-43

5 Working with Data Structures

5-44

2 Instantiate parameter or signal objects from your subclass and set their
properties appropriately, from the command line or using Model Explorer.

3 Use the objects as parameters or signals within your model.

4 Generate code and build your target executable.

The following sections describe the relationship between Simulink data
objects and code generation in Real-Time Workshop.

Parameter Objects
This section discusses how to use parameter objects in code generation. Topics

include:
® “Configuring Parameter Objects for Code Generation” on page 5-44

o “Effect of Storage Classes on Code Generation for Parameter Objects” on
page 5-45

® “Controlling Parameter Object Code Generation with Typed Commands”
on page 5-46

® “Controlling Parameter Object Code Generation By Using Model Explorer”
on page 5-47

Configuring Parameter Objects for Code Generation

In configuring parameter objects for code generation, you use the following
code generation and parameter object properties:

¢ The Inline parameters option (see “Parameters: Storage, Interfacing,
and Tuning” on page 5-2).
® Parameter object properties:

= Value. The numeric value of the object, used as an initial (or inlined)
parameter value in generated code.

= DataType. The data type of the object. This can be any Simulink numeric
data type, including a fixed-point, user-defined, or alias data type.

= RTWInfo.StorageClass. Controls the generated storage declaration
and code for the parameter object.

Simulink Data Obijects and Code Generation

Other parameter object properties (such as user-defined properties of
classes derived from Simulink.Parameter) do not affect code generation.

Note If Inline parameters is off (the default), the RTWInfo.StorageClass
parameter object property is ignored in code generation.

Effect of Storage Classes on Code Generation for Parameter
Objects
Real-Time Workshop generates code and storage declarations based on the

RTWInfo.StorageClass property of the parameter object. The logic is as
follows:

e Ifthe storage class is 'Auto' (the default), the parameter object is inlined
(if possible), using the Value property.

® For storage classes other than 'Auto’', the parameter object is handled as
a tunable parameter.

Note Even when parameters are not inlined, the symbol name might not
be preserved due to optimizations such as parameter pooling.

= A global storage declaration is generated. You can use the generated
storage declaration to make the variable visible to your hand-written
code. You can also make variables declared in your hand-written code
visible to the generated code.

The symbolic name of the parameter object is generally preserved in
the generated code.

See the table in “Controlling Parameter Object Code Generation By Using
Model Explorer” on page 5-47 for examples of code generated for possible
settings of RTWInfo.StorageClass.

5-45

5 Working with Data Structures

Controlling Parameter Object Code Generation with Typed
Commands

In this section, the Gain block computations of the model shown in the figure
below are used as an example of how Real-Time Workshop generates code
for a parameter object.

CBlock Parameters: Gain 2=l
Gain
’7 Element-wize gain [y = K.*u] or matrix gain [y = K*u or y = uk).

ISignaI data types I Parameter data types I

Gain:
[
Multiplication: I Element-wizelk. *u) LI

Sample time [-1 for inherited]:

|1

Ok I Lancel | Help | Apply |

Model Using Parameter Object Kp As Block Parameter

In this model, Kp sets the gain of the Gain block.
To configure a parameter object such as Kp for code generation,

1 Instantiate a Simulink.Parameter object called Kp. In this
example, the parameter object is an instance of the example class
SimulinkDemos.Parameter, which is provided with Simulink.

Kp = Simulink.Parameter
Kp =
Simulink.Parameter
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: '
DocUnits: '
Min: -Inf
Max: Inf
Value: 5

DataType: 'auto'
Complexity: 'real'’
Dimensions: '[1x1]"'

5-46

Simulink Data Obijects and Code Generation

Make sure that the name of the parameter object matches the desired block
parameter in your model. This ensures that Simulink can associate the
parameter name with the correct object. In the preceding model, the Gain
block parameter Kp resolves to the parameter object Kp.

2 Set the object properties you need. You can do this by using the Model
Explorer, or you can assign properties by using MATLAB commands, as
follows:

® To specify the Value property, type

Kp.Value = 5.0;

® To specify the storage class of for the parameter, set the
RTWInfo.StorageClass property, for example:

Kp.RTWInfo.StorageClass = 'ExportedGlobal';

The RTWInfo parameters are now

Kp.RTWInfo
Simulink.ParamRTWInfo
StorageClass: 'ExportedGlobal'
Alias: "'
CustomStorageClass: 'Default’
CustomAttributes: [1x1
SimulinkCSC.AttribClass_Simulink_ Default]

Controlling Parameter Object Code Generation By Using Model
Explorer

If you prefer, you can create and modify attributes of parameter objects using
Model Explorer. This lets you see all attributes of a parameter in a dialog box,
and alleviates the need to remember and type field names. Do the following to
instantiate Kp and set its attributes from Model Explorer:

1 Choose Model Explorer from the View menu.
Model Explorer opens or activates if it already was open.

2 Select Base Workspace in the Model Hierarchy pane.

5-47

5 Working with Data Structures

3 Select Simulink Parameter from the Add menu (or type Ctrl+R)

A new parameter named Param appears in the Contents pane:

& Model Explorer

ol x|
File Edit Yiew Tools Add Help

D@t meax BHeE%HF0 B 48|tz A
”Search Iby Block Type ;I Type: IGain LI Search

todel Hierarchy Contents of. Base ‘wWorkspace Simulink. Parameter: Param
E--@Simulink Root | Walue: |[1
ﬁ Ease'wWorkspace .
E--Enon_lunable_sin Data type: Iaulo Units: I
g---ﬁModel “workspace Dimensions: I[I] 0] Complexity: Ileal
5---%Eonliguration [Active) - .
H i} ! - il :
=] @Code for non_tunable_sit i Inf S Inf
@TUD Model —Code generation optian
---@Slmuhnk directary Storage class: I Auto ﬂ
?Advice far nan_tunable_:
Alias: I
Description:
K1 — ol
Fl | | _;I LCantents | Search Results Bevert | Help | 2pply

4 To set Kp.Name in Model Explorer, click the word Param in the Name

column to select it, and rename it by typing Kp followed by Return in
place of Param.

5 To set Kp.Value in Model Explorer, select the Value field at the top of the
Dialog pane and type 5.0, then click the Apply button.

5-48

Simulink Data Obijects and Code Generation

6 To set the Kp.RTWInfo.StorageClass in Model Explorer, click the Storage
class menu and select ExportedGlobal, as shown below:

& Model Explorer

ol x|
File Edit Yiew Tools Add Help
D@t mx [BHERHF0 B 48[tz
”Search Iby Block Type ;I Type: IGain LI Search |
todel Hierarchy Contents of. Base ‘wWorkspace Simulink.Parameter: Kp
E--@Simulink Fioat | Hame | Valuel DataType I Compler | Yalue: |5
g----ﬁBaseW’orkspace I'[:;;] kn 5)
E--Enon_lunable_sin Data type: Iaulo Units: I
; ﬁModeIW’orKspace Dimenzions: |[1 1] Complexity Ileal
5---%Eonliguration [Active) - .
H 1] : - 1] :
=] @Code far nan_tunable_sit i Inf S Inf
H E"'E@TUD Model —Cade generation option
- [g)Simuirk drectory Storage class: | EsportedGlabal 2
?Advice for nom_tunable_: o ”
Alias:
- ImportedE <tem
Description: ImpartedE <temPainter |
SimulinkGlobal
Default [Customn)]
BitField [Custom)] —
Conszt [Custam)
“Wolatile [Custam)
Constolatile [Custom) b
K1 — ol
Fl | | _;I LContents | Search Results Beverl Hep Spply
4

7 Click Apply.

The following table shows the variable declarations for Kp and the code
generated for the Gain block in the model shown in the preceding model,
with Inline parameters on and expression folding on (which includes
the gain computation in the output computation). An example is shown for
each possible setting of RTWInfo.StorageClass. Global structures include
the model name (symbolized as model or model).

5-49

5 Working with Data Structures

StorageClass Generated Variable Declaration
Property and Code
Auto

model Y.Out1 = rtb_u * 5.0;

Simulink Global
struct _Parameters_model {

real T Kp;
}

Parameters_model model P = {
5.0

b

model Y.Out1 = rtb_u * model P.Kp;

Exported Global
extern real T Kp;

real T Kp = 5.0;

model Y.Out1 = rtb_u * Kp;

Imported Extern
extern real T Kp;

model Y.Out1 = rtb_u * Kp;

Imported Extern
Pointer extern real_T *Kp;

model Y.Out1 = rtb_u * (*Kp);

5-50

Simulink Data Obijects and Code Generation

Kp =

Parameter Object Configuration Quick Reference

Diagram

The following figure shows the code generation and storage class options that

control the representation of parameter objects in generated code.

e

[OFF]

Inline

Parameters

\

ON

Simulink.Parameter; Kp.Value =

5.0;

REAL-TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

\

y = u*

Include parameters as Tields
in a global structure
(field names based on block hames)

(PtP.<2225);

REAL - TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

on)

y = u* (5.0);

{ [Auto] ﬁ

Use numeric value of
parameter(if possible)

~E const *p_<7?%> = &rtP.<?77>[0];
for (i=0; i<N; i++){ Otherwise, include in a
y[i] = u * {p_<?2?>[i]}; constant global structure
}
N /
< - = y¥ . Include in a
SimulinkGlohal ﬂ y o= repkp); CMUde A A e
ExportedGlobal E y = u* (Kp);
Symbol preserved
must be unique
ImportedExtern E ¥y = u* (Kp); Unstructured (que)
storage
_ ImportedExternPointer ¥ = u* (*Kp); .

KEY:
[option] : default for code generation option
<??7> : RTW generated symbol for parameter storage field

5-51

5 Working with Data Structures

5-52

Signal Objects

This section discusses how to use signal objects in code generation. Signal
objects can be used to represent both signal and state data, and behave
similarly to parameter objects, described in “Parameter Objects” on page 5-44.

Configuring Signal Objects for Code Generation

In configuring signal objects for code generation, you use the following code
generation options and signal object properties:

¢ The Signal storage reuse code generation option (see “Signal Storage,
Optimization, and Interfacing” on page 5-27).

¢ The Enable local block outputs code generation option (see “Signal
Storage, Optimization, and Interfacing” on page 5-27).

®* The RTWInfo.StorageClass signal object property: The storage classes
defined for signal objects, and their effect on code generation, are the same
for model signals and signal objects (see “Storage Classes for Signals” on
page 5-29).

Other signal object properties (such as user-defined properties of classes
derived from Simulink.Signal) do not affect code generation.

Effect of Storage Classes on Code Generation for Signal Objects

The way in which Real-Time Workshop uses storage classes to determine how
signals are stored is the same with and without signal objects. However, if a
signal’s label resolves to a signal object, the object’s RTWInfo.StorageClass
property is used in place of the port configuration of the signal.

The default storage class is Auto. If the storage type is Auto, Real-Time
Workshop follows the Signal storage reuse, Buffer reuse, and Local
block outputs code generation options to determine whether signal objects
are stored in reusable and/or local variables. Make sure that these options
are set correctly for your application.

Simulink Data Obijects and Code Generation

To generate a test point or signal storage declaration that can interface
externally, use an explicit RTWInfo.StorageClass assignment. For example,
setting the storage class to SimulinkGlobal, as in the following command, is
equivalent to declaring a signal as a test point.

SinSig.RTWInfo.StorageClass = 'SimulinkGlobal';

Controlling Signal Object Code Generation By Using Typed
Commands

The discussion and code examples in this section refers to the model shown in
the following figure:

1 1 1
I::} inSig ’{ Gain1 5ig

In . Out1
zain

To configure a signal object, you must first create it and associate it with a
labeled signal in your model. To do this,

1 Define a subclass of Simulink.Signal. In this example, the signal object is
an instance of the class Simulink.Signal, which is provided with Simulink.

2 Instantiate a signal object from your subclass. The following example
instantiates inSig, a signal object of class Simulink.Signal.

inSig = Simulink.Signal
inSig
Simulink.Signal

RTWInfo: [1x1 Simulink.SignalRTWInfo]

Description: '
DocUnits: '
Min: -Inf
Max: Inf

DataType: 'auto'
Dimensions: -1
Complexity: 'auto'
SampleTime: -1

SamplingMode: 'auto'

5-53

5 Working with Data Structures

5-54

Make sure that the name of the signal object matches the label of the
desired signal in your model. This ensures that Simulink can resolve the
signal label to the correct object. For example, in the model shown in the
above figure, the signal label inSig would resolve to the signal object inSig.

3 You can require signals in a model to resolve to Simulink.Signal objects.
To do this for the signal inSig, in the model window right-click the signal
line labeled inSig and choose Signal Properties from the context menu.

4 In the Signal Properties dialog box that appears, select the check box
labelled Signal name must resolve to Simulink signal object, and
click OK or Apply. The dialog box appears as follows:

Zlsignal Properties: insig 2=l

Signal name: |inSig
¥ Signal name rust rezolve to Simulink signal object
Logging and accessibility I Real-Time Workshop | Documentation I

™ Logsignal data ™ Test point
—Logging name

I Uze signal name LI IinSig

—Data

I~ Limit data points to last: ISDDD

I~ Decimation: |2

ok | Cancel H:

Apply |

5 Set the object properties as required. You can do this by using the Simulink
Data Explorer. Alternatively, you can assign properties by using MATLAB

commands. For example, assign the signal object’s storage class by setting
the RTWInfo.StorageClass property as follows.

inSig.RTWInfo.StorageClass = 'ExportedGlobal';

Controlling Signal Object Code Generation By Using Model
Explorer

If you prefer, you can create signal objects and modify their attributes using
Model Explorer. This lets you see and set attributes of a signal in a dialog

Simulink Data Obijects and Code Generation

box pane, and alleviates the need to remember and type field names. Do the
following to instantiate inSig and set its attributes from Model Explorer:

1 Choose Model Explorer from the View menu.
Model Explorer opens or activates if it already was open.
2 Select Base Workspace in the Model Hierarchy pane.
3 Select Simulink Signal from the Add menu (or type Ctrl+S)

A new signal named Sig appears in the Contents pane:

E® Model Explorer

N (=S|
File Edit Yiew Tools Add Help

oS s mmx[BH<%Hffo0 @4k | Arm=zA
JJSearch |by Block Type ;I Type: |Gain LI Search |

tadel Hierarchy Contents of: Base Warkspace Simulink_Signal: Sig
EIEISI ink. Foot | T I DataType I Valuel Dirme| | D'ata type: Iautn 'l Units: I
i HPEEE £ Sig auta 4l Dimensions: |-1 Complexity: Iauto vl
=)- R signal_objs_examp Sample |1— Gy Il—_l
ample time: |- ample mode: | auto -
ﬁ todel work space b _p
E %Eonfigwation [Buctive) Firirum; -Inf I arimum: Inf
;---@Code far signal_objs_exa Initial walue: I
- % dvice for signal_obis_es —Code generation optian
Storage c\ass:l Auto LI
Alias |
Description:
e | 2l
< | || Contents | Search Fesults Fevert | Help Apply

4 To set the signal name in Model Explorer, click the word Sig in the Name

column to select it, and rename it by typing inSig followed by Return
in place of Sig.

5-55

5 Working with Data Structures

5-56

5 To set the inSig.RTWInfo.StorageClass in Model Explorer, click the

Storage class menu and select ExportedGlobal, as shown below:

& Model Explorer

File Edit View Tools Add Help

=0l x|

D@ tmmaxELHc%HF fo® D4k | Anm=A

JJ Search: Ib_l,l Black Type

;I Type: IGain ;I Search

Model Hierarchy

- 9] Simulink Root

& Base ‘Workspace

B sighal_obis_examp
ﬁ tdodel Wwork space
t;%Comfiguratiom [Active)
H @Cude for signal_objs_exa
@Advice for signal_objs_e:

Contents of: Base Waorkzpace

| Name I DataTupe I Valuel Dime
“+= Sig auto hl
I R 2

Contents | Search Results

Simulink.Signal: Sig

[ata type: Iauto 'l

Ulriks:

—

Dimensians: |-1 Complexity: I auta 'l
Sample time: |-1 Sample mode:l auto vl

b -Inf I arimum: Inf
Iniitial walue: I
—Code generation option
Storage class: | Auto LI
Alias Ao =
Simulink G lobal
Description:
ImportedE stern —
ImportedE sternPointer
Default [Custom)
BitField [Custom)
Wolatile [Custom) —
ExportT oFile [Custom]
ImportFromFile [Custom) b
Rewvert Help Apply
4

6 Click Apply.

The following table shows, for each setting of RTWInfo.StorageClass, the
variable declaration and the code generated for the inport signal (inSig) of
the model shown in the above figure.

Simulink Data Obijects and Code Generation

Storage Class | Declaration Code
Auto (with In model.h
storage rtb_Gainisig =
optirnizatiorls typedef struct signal_objs_examp_U.inSig *
on) _Externallnputs_signal_ objs_examp_tag signal_objs_examp_P.Gain_Gain;
{
real_T inSig;
}
ExternalInputs_signal_ objs_examp;
Simulink In model.h
Global rtb_GainiSig =
typedef struct signal_objs_examp_U.inSig *
_Externallnputs_signal_objs_examp_tag signal_objs_examp_P.Gain_Gain;
{
real_T inSig;
}
ExternalInputs_signal_objs_examp;
Exported In model.c or model.cpp
Global rtb_Gaini1Sig = inSig *
real T inSig; signal_objs_examp_P.Gain_Gain;
In model.h
extern real_T inSig;
Imported In model private.h
Extern rtb_Gain1Sig = inSig *
extern real_T inSig; signal_objs_examp_P.Gain_Gain;
Imported In model private.h

Extern Pointer

extern real_T *inSig;

rtb_Gain1Sig = (*inSig) *
signal_objs_examp_P.Gain_Gain;

Using Signal Obijects to Initialize Signals and Discrete

States

You can use Simulink signal objects to initialize signals and discrete
states with user-defined values for simulation and code generation. Data
initialization increases application reliability and is a requirement of safety

5-57

5 Working with Data Structures

5-58

critical applications. Initializing signals for both simulation and code
generation can expedite transitions between phases of Model-Based Design.

Sections that follow discuss:

® “Specifying an Initial Value for a Signal Object” on page 5-58
® “Signal Object Initialization in Generated Code” on page 5-62
® “Tunable Initial Values” on page 5-65

For details on simulation behavior, see “Initialization Behavior Summary for
Signal Objects” in the Simulink documentation.

Specifying an Initial Value for a Signal Object

You can use signal objects that have a storage class other than 'auto’ or
'SimulinkGlobal' to initialize

® Discrete states with an initial condition parameter

® Any signals in a model except bus signals and signals with constant sample

time

The initial value is the signal or state value before a simulation takes its
first time step.

Note Initial value settings for signal objects that represent the following
signals and states override the corresponding block parameter initial values if
undefined (specified as []):

® Qutput signals of conditionally executed subsystems and Merge blocks

® Block states

To specify an initial value, use the Model Explorer or MATLAB commands to
do the following:

1 Create the signal object.

Simulink Data Obijects and Code Generation

Model Explorer

& Model Explorer =100 x]

File Edic Yiew Tools | Add Help

JJD Ef;[¥ By @ matLaBvarable il m.[[@gﬁ”‘.’.: .|
["° Simulink Parameter Chrl+R 2
Search: Ib}l Block Type 'I Zf Search
JJ— MPT Parameter ET
tadel Hierarchy Ctrl4s brkspace Base Workspace
E--@Simulink Root ——— DataTupe | Dimensions | wir| | | The bass [MATLAB] workspace contains vaiiables that are visible to all
£ MPT Signal 2B Simulink models. These variables can be used to parameterize certain
. " T Simulink Al auto 1 Anf | roded, Black, and ¢ighal parameters.
"ESIQHGLIV Simulink AliasType auto [Inf
T Simulink MumericType auto 1 Inf
T Simulink StruckType auta 1] Inf
= Simulink Bus
~ Configuration et
Add Custom, ., _'I
Fevert Help Apply
R ESE R T Chrite @
Add a Simulink signal obj [153] Data Ch+D A

MATLAB Command

S1=Simulink.Signal;

The name of the signal object must be the same as the name of the signal
that the object is initializing. Although not required, consider setting the
Signal name must resolve to Simulink signal object option in the
Signal Properties dialog box. This setting ensures consistency between
signal objects in the MATLAB workspace and the signals that appear in
your model.

Consider using the Data Object Wizard to create signal objects. The Data
Object Wizard searches a model for signals for which signal objects do not
exist. You can then selectively create signal objects for multiple signals
listed in the search results with a single operation. For more information
about the Data Object Wizard, see “Data Object Wizard” in the Simulink
documentation.

5-59

5 Working with Data Structures

2 Set the signal object’s storage class to a value other than 'auto’ or
'SimulinkGlobal’.

Model Explorer

E® Model Explorer

_lolx
File Edit Yiew Tools Add Help
D2 tmex EHc%HFffo® Dnm4n A m= A
”Search Iby Black Type LI Type: IConstant LI % Search |
odel Hierarchy Contents of: Base “Workspace Simulink.Signal: 51
i] Simuink oot | DalaTypaI D\mensiunsl Mir | Data tupe: Iauto j' Units: I =
E""EB“:‘SB Warkspace suto [11] Arf || Dimensions: I-‘I Complesity: I ata -
Bl sianal i
Bsignal_ir auto [11] Anf || 5ample time:|-1 Sarmple mode:l alta e
auto [ot Minimum: | nf I aximim: Inf
auto [-Inf i
Initial valus: I
Code generation optian:
Storage class: | Auto ;I
Alias: Auto || 2=
SirnulinkGlobal |
Diescription:
ImportedE=tem —
| ImportedE <temPainter Y.
4 _’I 2| Deh.ault [Custom] 2
BitField [Custom)]
4 | _,I Contents | Search Results | Walatle [Custor) =
E <portT oFile (Custom)
P A

MATLAB Command

S1.RTWInfo.StorageClass="'ExportedGlobal';

3 Set the initial value. You can specify any MATLAB string expression that
evaluates to a double numeric scalar value or array.

Model Explorer MATLAB Command

Valid 1.5 foo = 1.5;
[1 2 3] s1.Initialvalue = 'foo';
1+0.5
Invalid uint (1) foo = '1.5"';
s1.Initialvalue = 'foo';

If necessary, Simulink converts the initial value to ensure type, complexity,
and dimension consistency with the corresponding block parameter value.

5-60

Simulink Data Obijects and Code Generation

If you specify an invalid value or expression, an error message appears
when you update the model.

Model Explorer

& Model Explorer =10 x|
File Edit “iew Tools Add Help
D@ smaxHH<wHAF 0O D04k A mz A
JJ Search Ihy Block Type LI Type: IEnnstant LI Search |
todel Hierarchy Contents of: Base Workspace Simulink.Signal: 51
E--@Simulink Roat I Name | DalaTypaI D\mensiunsl Wir| | Data tupe: Iauto ¥ | Unitg: I =
- 1 Base Workspace B tout ble [a.. Dimenszions: |-1 Complexity: I auta hd
- Wbl signal i
ES'QHG—N B vout . Sample time:|-1 Sample mode:l auta =
["’?"’1 o auta 0] it Minimum: ~ |nf I aximuim: Inf
[j,éi] cz auto [11] rf o
auto Rl I Initial value: IE
auto [Irf Code generation optian
auto <l Arf Starage class I Exportedilobal ;I
Aliaz: I
Description:
I _lLl
7 |2 | | >
| | _,I Contents | Search Results | Fla WEE | £l |
Add a Stateflow event A

MATLAB Command

Si1.InitialValue='0.5"

The following example shows a signal object specifying the initial output of
an enabled subsystem.

5-61

5 Working with Data Structures

5-62

Enable

Out1
Initial Output =[]

+H+ +H+ .
Gain

o
Enable P
Ts=0.1 ‘ -
Phase Delay = 10 samples

A 4
In

I+

. p|int out o el
ol 'o' RIS
ine Wav)
Sine Wave Enabled

Amplitude = 1
Period = 10 samples Subsystem

Ts=0.1

Model predoad function:

g = Simulink Signal;
5. RTWinfo StorageClass="ExportedGlabal;
g InitialValue="4.5",

Signal s is initialized to 4.5. Note that to avoid a consistency error, the initial
value of the enabled subsystem’s Outport block must be [] or 4.5.

Signal Object Initialization in Generated Code
The initialization behavior for code generation is the same as that for model
simulation with the following exceptions:

¢ Use of the Data Import/Export pane of the Configuration Parameters
dialog box to load input values from the model’s base workspace applies to
RSim target executables only. GRT and ERT targets cannot gain access to
input values in the base workspace.

Simulink Data Obijects and Code Generation

¢ The initial value for a block output signal or root level input or output
signal can be overwritten by an external (calling) program.

® Setting the initial value for persistent signals is relevant if the value is
used or viewed by an external application.

For details on initialization behavior for different types of signals and discrete
states, see “Initialization Behavior Summary for Signal Objects” in the
Simulink documentation.

When you initialize Simulink signal objects in a model during code generation,
the corresponding initialization statements are placed in model.c or
model.cpp in the model’s initialize code.

For example, consider the demo model rtwdemo_sigobj iv:

[}

Pulse
Generator

n —
COg—m owif—

In1 .
V=45 Enablod IV=2.0 Data Store Data Store Gain |[wv=3.0

Write Read
Subsystem
(state X1 inside) _—
X2 | [N=35
Data Store
Memory

If you create and initialize signal objects in the base workspace,

Real-Time Workshop places initialization code for the signals in the file
rtwdemo_sigobj iv.c under the rtwdemo _sigobj iv_initialize function,
as shown below.

/* Model initialize function */

void rtwdemo_sigobj_iv_initialize(boolean_T firstTime)

/* exported global signals */

5-63

5 Working with Data Structures

S2 = -2.0;

/* exported global states */
X1 = 0.0;
X2 = 0.0;

/* external inputs */
S1 = -4.5;

The following code fragment shows the initialization code for the enabled
subsystem’s Unit Delay block state X1 and output signal S2.

void MdlStart(void) {

/* InitializeConditions for UnitDelay: '<S2>/Unit Delay' */
X1 = aal;

/* Start for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */
/* virtual outports code */
/* (Virtual) Outport Block: '<S2>/0ut1' */

82 = aa2;

Also note that for an enabled subsystem, such as the one shown in the
preceding model, the initial value is also used as a reset value if the
subsystem’s Outport block parameter Output when disabled is set to
reset. The following code fragment from rtwdemo_sigobj iv.c shows the

5-64

Simulink Data Obijects and Code Generation

assignment statement for S3 as it appears in the model output function
rtwdeni_sigobj_iv_output.

/* Model output function */

static void rtwdemo_sigobj_iv_output(void)

{

/* Disable for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */
/* (Virtual) Outport Block: '<S2>/0ut1' */

S2 = aa2;

Tunable Initial Values

If you specify a tunable parameter in the initial value for a signal object, the
parameter expression is preserved in the initialization code in model.c.

For example, if you configure parameter df to be tunable for model signal iv
and you initialize the signal object for discrete state X1 with the expression
df*2, the following initialization code appears for signal object X1 in
signal_iv.c.

void MdlInitialize(void) {
/* InitializeConditions for UnitDelay: '<Root>/Unit Delay X1=2' */

X1 = (tunable_param_P.df * 2.0);
}

For more information about the treatment of tunable parameters in generated
code, see “Parameters: Storage, Interfacing, and Tuning” on page 5-2.

Resolving Conflicts in Configuration of Parameter
and Signal Objects

This section describes how to avoid and resolve certain conflicts that can arise
when using parameter and signal objects.

5-65

5 Working with Data Structures

5-66

Parameters

As explained in “Simulink Data Objects and Code Generation” on page 5-43
and “Using the Model Parameter Configuration Dialog Box” on page 5-9, two
methods are available for controlling the tunability of parameters. You can

® Define them as Simulink.Parameter objects in the MATLAB workspace

® Use the Model Parameter Configuration dialog box

The following figures show how you can use each of these methods to
control the tunability of parameter Kp. The first figure shows Kp defined as
Simulink.Parameter in the Model Explorer. You control the tunability of Kp
by specifying the parameter’s storage class.

& Model Explorer =131 x|
File Edit View Tools Add Help
[0zt mmx B0 00 48wz A
JJSearch: Ib_l,l Block Type LI Type: IGain LI Search
Model Hierarchy Contents of: Base Workspace Simulink.Parameter: Kp
E--@Simulink Foot e DataType Walue: |3 =
E----&Base wiorkspace] Data type: Iaulo Units: I
Gl T simulink Dimensions: [T 11 Comperis [T
--Esignals_examp imensions: omplexity: |real
Minirriurm: I-Inf I awimuirn: IInf
—Code generation option
Storage class:l ExportediGlobal LI
Alias: I
Description:
i ol =
<| | _,I Contents | Search Resultz | Revert Help | Apply |
A

Parameter Object Kp with Auto Storage Class in Model Explorer

Simulink Data Obijects and Code Generation

The following figure shows how you can use the Model Parameter
Configuration dialog box to specify a storage class for numeric variables in the
MATLAB workspace.

«):Model Parameter Configuration: signals_examp i |EI|1|
rDescription

Define the global (funable) parameters for your model. These parameters affect:

1. the simulation by providing the ability to tune parameters during execution, and

2. the generated code by enabling access to parameters by other modulas.
rSource list Global iunahle) parameters

MATLAB workspace j Mame Storage class Storage type gualifier

1|kp ExportedGlabal d| 7]
MName
1|kp

Refresh list | Add to tahle >>| e | Remaove |

Ready |T| Cancel | Help | Apply |

Parameter Kp Defined with SimulinkGlobal Storage Class

Note The MathWorks recommends that you not use both methods for
controlling the tunability of a given parameter. If you use both methods and
the storage class settings for the parameter do not match, an error results.

Signals and Block States

If a signal is defined in the Signal Properties dialog box and a signal object of
the same name is defined by using the command line or in Model Explorer,
the potential exists for ambiguity when Simulink attempts to resolve the
symbol representing the signal name. One way to resolve the ambiguity is to
specify that a signal must resolve to a Simulink data object. To do this, select
the Signal name must resolve to Simulink signal object option in the
Signal Properties dialog box. When you do this, you no longer can specify
the RTW storage class property in the Real-Time Workshop pane of the
Signal Properties dialog box, as the figure below illustrates.

5-67

5 Working with Data Structures

5-68

E! Signal Properties: SinSig ﬂﬂ

Signal name: |SinSig

[v :Signal name must resolve o Simulink signal obisct:

Logging and accessibility | Real-Time "Woarkshap I Docurmentation I
RTw storage clazs: I Auto LI
RTw storage type qualifier: I

Ok I Lancel | Help | Apply |

As the preceding figure shows, the RTW storage class menu is disabled
because it is up to the SinSig Simulink.Signal object to specify its own
storage class.

The signal and signal objects SinSig both have SimulinkGlobal storage class.
Therefore, no conflict arises, and SinSig resolves to the signal object SinSig.

Note The rules for compatibility between block states/signal objects are
identical to those given for signals/signal objects.

Customizing Code for Parameter and Signal Objects

You can influence the treatment of parameter and signal objects in generated
code by using TLC to access fields in object records in model.rtw files. For
details on doing this, see the Target Language Compiler documentation.

Using Objects to Export ASAP2 Files

Real-Time Workshop provides an interface for exporting ASAP2 files, which
you customize. For details, see Appendix B, “Generating ASAP2 Files”.

Block States: Storing and Interfacing

Block States: Storing and Interfacing

For certain block types, Real-Time Workshop lets you control how block states
in your model are stored and represented in the generated code. Using the
State properties tab of a block dialog box, you can

® Control whether or not states declared in generated code are interfaceable
(visible) to externally written code. You can also specify that states are to
be stored in locations declared by externally written code.

® Assign symbolic names to block states in generated code.

Storage of Block States

The discussion of block state storage in this section applies to the following
block types:

® Discrete Filter

® Discrete State-Space

® Discrete-Time Integrator

® Discrete Transfer Function

® Discrete Zero-Pole

® Memory

e Unit Delay

These block types require persistent memory to store values representing the
state of the block between consecutive time intervals. By default, such values
are stored in a data type work vector. This vector is usually referred to as the
DWork vector. It is represented in generated code as model DWork, a global

data structure. For more information on the DWork vector, see the Target
Language Compiler documentation.

If you want to interface a block state to your hand-written code, you can
specify that the state is to be stored in a location other than the DWork vector.
You do this by assigning a storage class to the block state.

You can also define a symbolic name, to be used in code generation, for a
block state.

5-69

5 Working with Data Structures

5-70

Block State Storage Classes

The storage class property of a block state specifies how Real-Time Workshop
declares and stores the state in a variable. Storage class options for block
states are similar to those for signals. The available storage classes are

® Auto
® ExportedGlobal
® ImportedExtern

® ImportedExternPointer

Default Storage Class

Auto is the default storage class. Auto is the appropriate storage class for
states that you do not need to interface to external code. States with Auto
storage class are stored as members of the Dwork vector.

You can assign a symbolic name to states with Auto storage class. If you
do not supply a name, Real-Time Workshop generates one, as described in
“Symbolic Names for Block States” on page 5-72.

Explicitly Assigned Storage Classes

Block states with storage classes other than Auto are stored in unstructured
global variables, independent of the Dwork vector. These storage classes

are appropriate for states that you want to interface to external code. The
following storage classes are available for states:

® ExportedGlobal: The state is stored in a global variable. model private.h
exports the variable. States with ExportedGlobal storage class must
have unique names.

® ImportedExtern: model private.h declares the state as an extern
variable. Your code must supply the proper variable definition. States with
ImportedExtern storage class must have unique names.

® ImportedExternPointer: model private.h declares the state as an
extern pointer. Your code must supply the proper pointer variable
definition. States with ImportedExternPointer storage class must have
unique names.

Block States: Storing and Interfacing

The table in “Summary of Signal Storage Class Options” on page 5-38 gives
examples of variable declarations and the code generated for block states
with each type of storage class.

Note Assign a symbolic name to states to specify a storage class other than
auto. If you do not supply a name for auto states, Real-Time Workshop
generates one, as described in “Symbolic Names for Block States” on page 5-72.

The next section explains how to use the State Properties dialog box to assign
storage classes to block states.

Using the State Properties Dialog Box to Interface
States to External Code
The State Properties tab of the relevant blocks’ parameter dialog boxes

lets you interface a block’s state to external code by assigning the state a

storage class other than Auto (that is, ExportedGlobal, ImportedExtern,
or ImportedExternPointer).

Set the storage class as follows:

1 In your block diagram, double-click the desired block. This opens the block
dialog box containing two or more tabs, one of which is State properties.
Alternatively, you can right-click the block and select Block properties

from the context menu.

2 Click the State Properties tab. The following appears:

E!Bluck Parameters: BodyDelay2 ged 3

Unit D elay
’7 Sample and hold with one sample period delay.

b ain |

State namme:

™ State name must resolve to Simulink signal object

RT' storage class: | Auto |
RTw storage type qualifier:

oK I Lancel Help Apply

5-71

5 Working with Data Structures

5-72

3 Enter a name for the variable to be used to store block state in the State
name field.

The State name field turns yellow to indicate that you changed it.
4 Click Apply to register the variable name.

The first two fields beneath the State name, State name must resolve
to Simulink signal object and RTW storage class, become enabled.

5 If the state is to be stored in a Simulink signal object in the base or model
workspace, select State name must resolve to Simulink signal object.

If you choose this option, you cannot declare a storage class for the state in
the block, and the fields below becomes disabled.

6 Select the desired storage class (ExportedGlobal, ImportedExtern, or
ImportedExternPointer) from the RTW storage class menu.

7 Optional: For storage classes other than Auto, you can enter a storage type
qualifier such as const or volatile in the RTW storage type qualifier
field. Real-Time Workshop does not check this string for errors; whatever
you enter is included in the variable declaration.

8 Click OK or Apply and close the dialog box.

Symbolic Names for Block States

To determine the variable or field name generated for a block’s state, you
can either
e Use a default name generated by Real-Time Workshop

® Define a symbolic name by using the State Name field of the State
Properties dialog box

Default Block State Naming Convention

If you do not define a symbolic name for a block state, Real-Time Workshop
uses the following default naming convention:

BlockType# DSTATE

Block States: Storing and Interfacing

where

® BlockType is the name of the block type (for example, Discrete_Filter).

® #is a unique ID number (#) assigned by Real-Time Workshop if multiple
instances of the same block type appear in the model. The ID number
is appended to BlockType.

® DSTATE is a string that is always appended to the block type and ID
number.

For example, consider the model shown in the following figure:

1
™ = » D)
1+0.5z Outd
LiscPulse DiscFilt

1

1+0 5z 1

Outz
Another Filt

Model with Two Discrete Filter Block States

Examine code generated for the states of the two Discrete Filter blocks.
Assume that:

e Neither block’s state has a user-defined name.

® The upper Discrete Filter block has Auto storage class (and is therefore
stored in the DWork vector).

® The lower Discrete Filter block has ExportedGlobal storage class.

The states of the two Discrete Filter blocks are stored in DWork vectors,
initialized as shown in the code fragment below:

/* data type work */

disc_filt states_M->Work.dwork = ((void *)

&disc_filt states_DWork);
(void)memset((char_T *) &disc_filt states DWork, O,
sizeof (D_Work _disc_filt states));

{

5-73

5 Working with Data Structures

5-74

int T i;
real T *dwork ptr = (real T *)
&disc_filt states DWork.DiscFilt DSTATE;

for (1 =0; 1 < 2; i++) {
dwork_ptr[i] = 0.0;
}
}

User-Defined Block State Names

Using the State Properties dialog box, you can define your own symbolic name
for a block state. To do this,

1 In your block diagram, double-click the desired block. This opens the block
dialog box, containing two or more tabs, one of which is State properties.

Alternatively, you can right-click the block and select Block properties
from the context menu.

2 Click the State properties tab.

3 Enter the symbolic name in the State name field of the State Properties
dialog box. For example, enter the state name Top_filter.

4 Click Apply. The dialog box appears as follows:

E! Block Parameters: BodyDelay2 ﬂﬂ

Unit Delay
’V Sample and hold with one zample period delay.

Main | State properties |

State name:

ITop_fiIter

[~ State name must resolve to Simulink signal object

RT%w storage class: | Auto LI
RTw storage type qualifier:

ok | Lancel

5 Click OK or Cancel to dismiss the block dialog box.

Block States: Storing and Interfacing

The following state initialization code was generated from the example model
shown in figure , under the following conditions:

® The upper Discrete Filter block has the state name Top_filter, and Auto
storage class (and is therefore stored in the DWork vector).

® The lower Discrete Filter block has the state name Lower_filter, and
storage class ExportedGlobal.

Top_filter is placed in the Dwork vector.

/* data type work */
disc_filt states_M->Work.dwork = ((void *)
&disc_filt states_DWork);
(void)memset((char_T *) &disc_filt states DWork, O,
sizeof (D_Work _disc_filt states));
disc_filt states DWork.Top_ filter = 0.0;

/* exported global states */
Lower_filter = 0.0;

Block States and Simulink Signal Objects

If you are not familiar with Simulink data objects and signal objects, you
should read “Simulink Data Objects and Code Generation” on page 5-43
before reading this section.

You can associate a block state with a signal object, and control code
generation for the block state through the signal object. To do this,

1 Instantiate the desired signal object, and set its RTWInfo.StorageClass
property as you require.

2 Open the State Properties dialog box for the block whose state you want
to associate with the signal object.

3 Enter the name of the signal object in the State name field.

4 Select State name must resolve to Simulink signal object.

5-75

5 Working with Data Structures

Simulink disables the RTW storage class and RTW storage type
qualifier options in the State Properties dialog box, because the signal
object specifies these settings.

5 Click Apply and close the dialog box.

Note When a block state is associated with a signal object, the mapping
between the block state and the signal object must be one to one. If two or
more identically named entities, such as a block state and a signal, map
to the same signal object, the name conflict is flagged as an error at code
generation time.

Summary of State Storage Class Options
Here is a simple model, unit_delay.mdl, which contains a Unit Delay block:

1
(1w - {1
Int z Outd

Unit Crelay

The following table shows, for each state storage class option, the variable
declaration and initialization code generated for a Unit Delay block state. The
block state has the user-defined state name udx.

Storage Class Declaration Initialization Code

Auto In model.h
unit_delay_ DWork.udx = 0.0;

typedef struct
D Work_unit_delay tag
{

real T udx;

}
D_Work_unit_delay;

5-76

Block States: Storing and Interfacing

Storage Class

Declaration

Initialization Code

Exported Global

In model.c or model.cpp

real_T udx;

In model.h

extern real_T udx;

In model.c or model.cpp

udx = 0.0;

Imported Extern

In model private.h

extern real_T udx;

In model.c or model.cpp

udx =
unit_delay_ P.UnitDelay_XO;

Imported Extern Pointer

In model private.h

extern real_T *udx;

In model.c or model.cpp

(*udx) =
unit_delay_ P.UnitDelay_XO;

5-77

5 Working with Data Structures

5-78

Storage Classes for Data Store Memory Blocks

You can control how Data Store Memory blocks in your model are stored and
represented in the generated code by assigning storage classes and type
qualifiers. You do this in almost exactly the same way you assign storage
classes and type qualifiers for block states.

Data Store Memory blocks, like block states, have Auto storage class by
default, and their memory is stored within the DWork vector. The symbolic
name of the storage location is based on the block name.

You can generate code from multiple Data Store Memory blocks that have the
same name, subject to the following restriction: at most one of the identically
named blocks can have a storage class other than Auto. An error is reported
if this condition is not met. For blocks with Auto storage class, Real-Time
Workshop generates a unique symbolic name for each block (if necessary)

to avoid name clashes. For blocks with storage classes other than Auto,
Real-Time Workshop simply uses the block name to generate the symbol.

To control the storage declaration for a Data Store Memory block, use the
RTW storage c